Alfalfa and sainfoin are high-quality forages with different condensed tannins (CT) content, which can be affected by the stage of maturity. To study the effects of CT on fermentation parameters, three substrates (alfalfa, sainfoin, and sainfoin+PEG) at three stages of maturity were in vitro incubated for 72 h. Sainfoin had greater total polyphenol and CT contents than alfalfa. As maturity advanced, CT contents in sainfoin decreased ( < 0.05), except for the protein-bound CT fraction ( > 0.05). The total gas and methane production was affected neither by the substrate nor by the stage of maturity ( > 0.05). Overall, sainfoin and sainfoin+PEG had greater in vitro organic matter degradability (IVOMD) than alfalfa ( < 0.05). Alfalfa and sainfoin+PEG presented higher ammonia content than sainfoin ( < 0.001). Total volatile fatty acid (VFA) production was only affected by the stage of maturity ( < 0.05), and the individual VFA proportions were affected by the substrate and the stage of maturity ( < 0.001). In conclusion, alfalfa and sainfoin only differed in the IVOMD and the fermentation end products. Moreover, CT reduced ammonia production and the ratio methane: VFA, but the IVOMD was reduced only in the vegetative stage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562820 | PMC |
http://dx.doi.org/10.3390/ani9050197 | DOI Listing |
Physiol Mol Biol Plants
December 2024
Department of Botany, University of Kashmir, Srinagar, 190006 India.
Petal senescence represents a crucial phase in the developmental continuum of flowers, ensuing tissue differentiation and petal maturation, yet anteceding seed formation and development. Instigation of petal senescence entails myriad of changes at the cytological, physiological and molecular dimensions, mirroring the quintessential characteristics of cell death. In the current investigation biochemical and molecular intricacies were scrutinized across various developmental stages (bud to the senescent phase).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
Tris(2-chloroethyl) phosphate (TCEP), a prevalent organophosphorus flame retardant, has been identified in various environmental matrices and human blood samples, provoking alarm regarding its hematological toxicity, a subject that has not been thoroughly investigated. Red blood cells (RBCs), or erythrocytes, are the predominant cell type in peripheral blood and are crucial for the maintenance of physiological health. This investigation employed oral gavage to examine the effects of TCEP exposure on erythrocyte counts in mice and to clarify the underlying mechanisms.
View Article and Find Full Text PDFToxicology
December 2024
Université Paris Cité, Inserm, HERA Team, CRESS UMR 1153, F-75006 Paris, France. Electronic address:
Bisphenol A (BPA), a ubiquitous environmental endocrine disruptor, is suspected of disturbing brain development through largely unknown cellular and molecular mechanisms. In the central nervous system, oligodendrocytes are responsible for forming myelin sheaths, which enhance the propagation of action potentials along axons. Disruption of axon myelination can have lifelong consequences, making oligodendrocyte differentiation and myelination critical stages of brain development.
View Article and Find Full Text PDFFront Plant Sci
December 2024
School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
Chickpeas are a vital source of protein and starch for a large portion of the world's population and are known to be impacted by heat stress at every life stage. Previously known as an "Orphan Legume", little is known of the genetic control of heat stress tolerance, and most previous research has focused on heat avoidance rather than tolerance. This study utilised a population of 148 chickpea genotypes, primarily Kabulis, in 12 field trials conducted at 2 locations, two sowing periods, and across 3 years.
View Article and Find Full Text PDFFront Neurosci
December 2024
CIMAINA and Dipartimento di Fisica "A. Pontremoli", Università degli Studi di Milano, Milan, Italy.
The brain's ability to perform efficient and fault-tolerant data processing is strongly related to its peculiar interconnected adaptive architecture, based on redundant neural circuits interacting at different scales. By emulating the brain's processing and learning mechanisms, computing technologies strive to achieve higher levels of energy efficiency and computational performance. Although efforts to address neuromorphic solutions through hardware based on top-down CMOS-based technologies have obtained interesting results in terms of energetic efficiency improvement, the replication of brain's self-assembled and redundant architectures is not considered in the roadmaps of data processing electronics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!