Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.

Molecules

College of Chemistry, Chemical Engineering and Material Science, Orthopaedic Institute, Soochow University, Suzhou 215006, Jiangsu, China.

Published: April 2019

Fibrous hydrogel scaffolds have recently attracted increasing attention for tissue engineering applications. While a number of approaches have been proposed for fabricating microfibers, it remains difficult for current methods to produce materials that meet the essential requirements of being simple, flexible and bio-friendly. It is especially challenging to prepare cell-laden microfibers which have different structures to meet the needs of various applications using a simple device. In this study, we developed a facile two-flow microfluidic system, through which cell-laden hydrogel microfibers with various structures could be easily prepared in one step. Aiming to meet different tissue engineering needs, several types of microfibers with different structures, including single-layer, double-layer and hollow microfibers, have been prepared using an alginate-methacrylated gelatin composite hydrogel by merely changing the inner and outer fluids. Cell-laden single-layer microfibers were obtained by subsequently seeding mouse embryonic osteoblast precursor cells (MC3T3-E1) cells on the surface of the as-prepared microfibers. Cell-laden double-layer and hollow microfibers were prepared by directly encapsulating MC3T3-E1 cells or human umbilical vein endothelial cells (HUVECs) in the cores of microfibers upon their fabrication. Prominent proliferation of cells happened in all cell-laden single-layer, double-layer and hollow microfibers, implying potential applications for them in tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515047PMC
http://dx.doi.org/10.3390/molecules24081633DOI Listing

Publication Analysis

Top Keywords

tissue engineering
16
microfibers structures
12
double-layer hollow
12
hollow microfibers
12
microfibers
11
cell-laden hydrogel
8
hydrogel microfibers
8
potential applications
8
applications tissue
8
single-layer double-layer
8

Similar Publications

Nuclear magnetic resonance (NMR) spectroscopy is a valuable diagnostic tool limited by low sensitivity due to low nuclear spin polarization. Hyperpolarization techniques, such as dissolution dynamic nuclear polarization, significantly enhance sensitivity, enabling real-time tracking of cellular metabolism. However, traditional high-field NMR systems and bioreactor platforms pose challenges, including the need for specialized equipment and fixed sample volumes.

View Article and Find Full Text PDF

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

Engineered Cell Microenvironments: A Benchmark Tool for Radiobiology.

ACS Appl Mater Interfaces

January 2025

Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

The development of engineered cell microenvironments for fundamental cell mechanobiology, in vitro disease modeling, and tissue engineering applications increased exponentially during the last two decades. In such context, in vitro radiobiology is a field of research aiming at understanding the effects of ionizing radiation (e.g.

View Article and Find Full Text PDF

Amniotic Tissue Injections Are an Effective Alternative to Corticosteroid Injections for Pain Relief and Function in Patients With Severe Knee Osteoarthritis: A Double-Blind, Randomized, Prospective Study.

J Am Acad Orthop Surg Glob Res Rev

January 2025

From the Steadman Hawkins Clinic of the Carolinas, Prisma Health-Upstate, Greenville, SC (Dr. Pill, Dr. Ahearn, Dr. Siffri, Dr. Burnikel, Dr. Cassas, Dr. Wyland, and Dr. Kissenberth); the Mayo Clinic Arizona, Scottsdale, AZ (Dr. Tokish); the Department of Orthopaedics, Duke University, Durham NC (Dr. Cook); the Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC (Dr. Mercuri, Mr. Sawvell, and Mr. Wright); the Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, SC (Dr. Mercuri, Mr. Sawvell, and Mr. Wright); and the Hawkins Foundation, Greenville, SC (Dr. Hutchinson, Dr. Bynarowicz, and Dr. Adams).

Introduction: The use of corticosteroid injections for short-term pain relief for knee osteoarthritis can have deleterious adverse effects. Amniotic tissue has shown promise in vitro; therefore, this study compared a morcellized injectable amniotic tissue allograft to corticosteroid injection.

Methods: Eighty-one patients with symptomatic severe knee osteoarthritis (Kellgren-Lawrence grade 3 to 4) were prospectively randomized to either a double-blinded single injection of BioDRestore (Integra LifeSciences; n = 39) or triamcinolone acetonide (n = 42).

View Article and Find Full Text PDF

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!