Defect Chemistry and Na-Ion Diffusion in NaFe(PO) Cathode Material.

Materials (Basel)

Department of Materials, Imperial College London, London SW7 2AZ, UK.

Published: April 2019

In this work, we employ computational modeling techniques to study the defect chemistry, Na ion diffusion paths, and dopant properties in sodium iron phosphate [NaFe(PO)] cathode material. The lowest intrinsic defect energy process (0.45 eV/defect) is calculated to be the Na Frenkel, which ensures the formation of Na vacancies required for the vacancy-assisted Na ion diffusion. A small percentage of Na-Fe anti-site defects would be expected in NaFe(PO) at high temperatures. Long-range diffusion of Na is found to be low and its activation energy is calculated to be 0.45 eV. Isovalent dopants Sc, La, Gd, and Y on the Fe site are exoergic, meaning that they can be substituted experimentally and should be examined further. The formation of Na vacancies and Na interstitials in this material can be facilitated by doping with Zr on the Fe site and Si on the P site, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515689PMC
http://dx.doi.org/10.3390/ma12081348DOI Listing

Publication Analysis

Top Keywords

defect chemistry
8
cathode material
8
ion diffusion
8
formation vacancies
8
chemistry na-ion
4
diffusion
4
na-ion diffusion
4
diffusion nafepo
4
nafepo cathode
4
material work
4

Similar Publications

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

Boosting the Hydrogen Evolution Activity of a Low-Coordinated Co─N─C Catalyst via Vacancy Defect-Mediated Alteration of the Intermediate Adsorption Configuration.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.

The cobalt-nitrogen-carbon (Co─N─C) single-atom catalysts (SACs) are promising alternatives to precious metals for catalyzing the hydrogen evolution reaction (HER) and their activity is highly dependent on the coordination environments of the metal centers. Herein, a NaHCO etching strategy is developed to introduce abundant in-plane pores within the carbon substrates that further enable the construction of low-coordinated and asymmetric Co─N sites with nearby vacancy defects in a Co─N─C catalyst. This catalyst exhibits a high HER activity with an overpotential (η) of merely 78 mV to deliver a current density of 10 mA cm, a Tafel slope of 45.

View Article and Find Full Text PDF

Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.

View Article and Find Full Text PDF

Solvothermally optimizing AgTe/AgS composites with high thermoelectric performance and plasticity.

Mater Horiz

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

Silver-based fast ionic conductors show promising potential in thermoelectric applications. Among these, AgS offers unique high plasticity but low electrical conductivity, whereas AgTe exhibits high intrinsic electrical conductivity yet faces limitations due to high thermal conductivity and poor plasticity. Developing a composite thermoelectric material that combines the benefits of both is therefore essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!