Oxygen Transfer Capacity of Pseudobrookite Particles Derived from Ilmenite Mineral ( wt.%CuO/ wt.%red Mud- wt.%ilmenite).

J Nanosci Nanotechnol

Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.

Published: October 2019

The minerals have a somewhat slower than other transition metals at critical reduction rates in their ability to deliver oxygen. Thus, single minerals alone do not exhibit a higher oxygen transfer capacity than metal oxide oxygen carriers. In this study, we try to solve the problem of single mineral ilmenite (FeTiO₃) by combining it with Fe-based red mud and Cu oxide. When the ilmenite was used without calcination, the CH₄-CO/air redox cycle showed rapid decayed. However, when ilmenite was calcined, the CH4-CO/air redox cycle became stable, and the oxygen transfer rate increased to 4.2%. This is because the FeTiO₃ structure was converted to the pseudobrookite (Fe₂TiO) structure through the calcination process. That is, the Fe ion in the ilmenite structure was converted into an Fe ion. When 30 wt.% of red mud was added to the Fe ion, it reacted with the rutile-type titania mixed with pseudobrookite-typed Fe₂TiO, producing an almost perfect pseudobrookite crystal. This resulted in a slight increase in the capacity of oxygen transfer to 4.9%. When 15 wt.% of Cu oxide was added, the oxygen transfer capacity increased to 6.0%. This performance was indicated by the cyclic voltammetry curve that remained constant even after 200 cycles. Here, we argue that if low-cost minerals as a base material are used in appropriate amounts, the production of a lowest-cost oxygen carrier can be achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.17087DOI Listing

Publication Analysis

Top Keywords

oxygen transfer
20
transfer capacity
12
oxygen
8
oxide oxygen
8
red mud
8
redox cycle
8
structure converted
8
ilmenite
5
capacity
4
capacity pseudobrookite
4

Similar Publications

Frequent changes in altitude and oxygen levels limit the practical application of traditionally derived exercise thresholds or training zones based on heart rate (HR) or blood lactate concentration (bLa). We investigated the transferability of a muscle oxygenation (SmO)-based intensity prescription between different hypoxic conditions to assess the suitability of real-time SmO measurements for ski-mountaineering (SKIMO) athletes during submaximal endurance exercise. A group of 15 well-trained male SKIMO athletes performed a graded-intensity run test in normoxia (87 m ASL, FiO = 20.

View Article and Find Full Text PDF

Proton exchange membrane fuel cells (PEMFCs) are being pursued for applications in the maritime industry to meet stringent ship emissions regulations. Further basic research is needed to improve the performance of PEMFCs in marine environments. Assembly stress compresses the gas diffusion layer (GDL) beneath the ribs, significantly altering its pore structure and internal transport properties.

View Article and Find Full Text PDF

Valence State and Catalytic Activity of Ni-Fe Oxide Embedded in Carbon Nanotube Catalysts.

Nanomaterials (Basel)

December 2024

School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The catalytic activity of Ni-Fe oxide embedded in CNTs was investigated in terms of valence states and active oxygen species. Ni-Fe oxides were prepared by the sol-gel combustion process, and Ni-Fe oxides embedded in CNT catalysts were synthesized by the catalytic chemical vapor deposition (CCVD) method. The lattice structure of the Ni-Fe oxide catalysts was analyzed, and the lattice distortion was increased with the addition of Fe.

View Article and Find Full Text PDF

Constructing an Isopolymolybdate-Based Bifunctional Photocatalyst for Promoting Nitroaromatic Reduction and C-H Oxidation.

Inorg Chem

December 2024

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.

Amide compounds are widely present in drug molecules and natural products, which can be synthesized by acid-amine condensation. It is urgent to design new photocatalysts for achieving both nitroaromatic reduction and C-H oxidation to obtain raw materials, carboxylic acids, and aromatic amines. Herein, a novel isopolymolybdate-incorporated photoactive metal-organic framework, -TPT, was constructed by combining the oxidation catalyst [MoO], Ni(II) cation, and photosensitive ligand 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT).

View Article and Find Full Text PDF

X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!