To solve charge-imbalanced problem caused by excessive electron injection into the emitting layer (EML) of quantum dot light emitting diodes (QLEDs) with ZnO electron transport layer (ETL), we proposed QLEDs with TPBi((2,2',2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)))/ZnO ETL layered design. Spin coated TPBi demonstrated lower value of the lowest unoccupied molecular orbital (LUMO) than conduction band maximum (CBM) of ZnO, resulting in effective prevention of excessive injection of electrons into the EML even under excessive stress conditions. Experimental results demonstrated that QLEDs with TPBi/ZnO ETL not only could minimize charge imbalanced problem under high current density operation, but also could increase the maximum luminance of QLEDs by up to 156% (i.e., from 10,320 to 16,081 cd/m²). In addition, the new design with TPBi resulted in low roll-off phenomenon in external quantum efficiency (EQE)-current density characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2019.17020 | DOI Listing |
J Nanosci Nanotechnol
October 2019
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
To solve charge-imbalanced problem caused by excessive electron injection into the emitting layer (EML) of quantum dot light emitting diodes (QLEDs) with ZnO electron transport layer (ETL), we proposed QLEDs with TPBi((2,2',2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)))/ZnO ETL layered design. Spin coated TPBi demonstrated lower value of the lowest unoccupied molecular orbital (LUMO) than conduction band maximum (CBM) of ZnO, resulting in effective prevention of excessive injection of electrons into the EML even under excessive stress conditions. Experimental results demonstrated that QLEDs with TPBi/ZnO ETL not only could minimize charge imbalanced problem under high current density operation, but also could increase the maximum luminance of QLEDs by up to 156% (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!