Unsupervised Online Learning With Multiple Postsynaptic Neurons Based on Spike-Timing-Dependent Plasticity Using a Thin-Film Transistor-Type NOR Flash Memory Array.

J Nanosci Nanotechnol

Department of Electrical and Computer Engineering and the Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea.

Published: October 2019

We present a two-layer fully connected neuromorphic system based on a thin-film transistor (TFT)-type NOR flash memory array with multiple postsynaptic (POST) neurons. Unsupervised online learning by spike-timing-dependent plasticity (STDP) on the binary MNIST handwritten datasets is implemented, and its recognition result is determined by measuring firing rate of POST neurons. Using a proposed learning scheme, we investigate the impact of the number of POST neurons in terms of recognition rate. In this neuromorphic system, lateral inhibition function and homeostatic property are exploited for competitive learning of multiple POST neurons. The simulation results demonstrate unsupervised online learning of the full black-and-white MNIST handwritten digits by STDP, which indicates the performance of pattern recognition and classification without preprocessing of input patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.17025DOI Listing

Publication Analysis

Top Keywords

post neurons
16
unsupervised online
12
online learning
12
learning multiple
8
multiple postsynaptic
8
spike-timing-dependent plasticity
8
flash memory
8
memory array
8
neuromorphic system
8
mnist handwritten
8

Similar Publications

Introduction: Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain.

View Article and Find Full Text PDF

Developmental and neurotoxic effects of dimethyl phthalate on zebrafish embryos and larvae.

Aquat Toxicol

January 2025

Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China. Electronic address:

Dimethyl phthalate (DMP) has been extensively utilized as a plasticizer on a global scale for many years. Its presence in the environment and its harmful effects on living organisms have raised concerns. This study aimed to examine its potential developmental neurotoxicity by utilizing zebrafish as a model.

View Article and Find Full Text PDF

Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.

View Article and Find Full Text PDF

Objective To investigate the effects and molecular mechanism of Homer protein homolog 1a (Homer 1a) overexpression on nerve injury in mice with traumatic brain injury (TBI). Methods Sixty male C57BL/6 mice were randomly divided into five groups: sham group, TBI group, empty lentivirus (Lv-NC) group, Homer 1a overexpression lentivirus (Lv-Homer 1a) group and Lv-Homer 1a + 740 Y-P group, with 12 mice in each group. The lentivirus was orthotopic injected into the cerebral cortex of mice 5 d before modeling, while 740 Y-P was injected intraperitoneally 1 d before modeling.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a neurodegenerative disease, with a high disability rate. According to the results of mRNA-seq, transcription factor AP-2 Beta (TFAP2B) is a potential target of repetitive Transspinal Magnetic Stimulation (rTSMS) in SCI treatment. Our results demonstrated that rTSMS significantly improved motor function and promoted neuronal survival post-SCI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!