Glucagon regulates hepatic mitochondrial function and biogenesis through FOXO1.

J Endocrinol

Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA.

Published: June 2019

Glucagon promotes hepatic glucose production maintaining glucose homeostasis in the fasting state. Glucagon maintains at high level in both diabetic animals and human, contributing to hyperglycemia. Mitochondria, a major place for glucose oxidation, are dysfunctional in diabetic condition. However, whether hepatic mitochondrial function can be affected by glucagon remains unknown. Recently, we reported that FOXO1 is an important mediator in glucagon signaling in control of glucose homeostasis. In this study, we further assessed the role of FOXO1 in the action of glucagon in the regulation of hepatic mitochondrial function. We found that glucagon decreased the heme production in a FOXO1-dependent manner, suppressed heme-dependent complex III (UQCRC1) and complex IV (MT-CO1) and inhibited hepatic mitochondrial function. However, the suppression of mitochondrial function by glucagon was largely rescued by deleting the Foxo1 gene in hepatocytes. Glucagon tends to reduce hepatic mitochondrial biogenesis by attenuating the expression of NRF1, TFAM and MFN2, which is mediated by FOXO1. In db/db mice, we found that hepatic mitochondrial function was suppressed and expression levels of UQCRC1, MT-CO1, NRF1 and TFAM were downregulated in the liver. These findings suggest that hepatic mitochondrial function can be impaired when hyperglucagonemia occurs in the patients with diabetes mellitus, resulting in organ failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675317PMC
http://dx.doi.org/10.1530/JOE-19-0081DOI Listing

Publication Analysis

Top Keywords

hepatic mitochondrial
28
mitochondrial function
28
function glucagon
12
glucagon
9
hepatic
8
mitochondrial
8
glucose homeostasis
8
nrf1 tfam
8
function
7
foxo1
5

Similar Publications

Non-canonical hepatic androgen receptor mediates glucagon sensitivity in female mice through the PGC1α/ERRα/mitochondria axis.

Cell Rep

January 2025

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. Electronic address:

Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice.

View Article and Find Full Text PDF

Background: Tissue damage by viral hepatitis is a major cause of morbidity and mortality worldwide. Oxidation reactions and reactive oxygen species (ROS) transform proteins and lipids in plasma low-density lipoproteins (LDL) into the abnormal oxidized LDL (ox-LDL). Hepatitis C virus (HCV) infection induces oxidative/nitrosative stress from multiple sources, including the inducible nitric oxide synthase (iNOS), the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases (NOX enzymes), and inflammation.

View Article and Find Full Text PDF

The frequency of drug-induced liver injury (DILI) in clinical trials remains a challenge for drug developers despite advances in human hepatotoxicity models and improvements in reducing liver-related attrition in preclinical species. TAK-994, an oral orexin receptor 2 agonist, was withdrawn from phase II clinical trials due to the appearance of severe DILI. Here, we investigate the likely mechanism of TAK-994 DILI in hepatic cell culture systems examined cytotoxicity, mitochondrial toxicity, impact on drug transporter proteins, and covalent binding.

View Article and Find Full Text PDF

Aqueous Extract of Cornus officinalis Alleviate NAFLD via Protecting Hepatocytes Proliferation through Regulation of the Tricarboxylic Acid Cycle.

J Ethnopharmacol

January 2025

International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China. Electronic address:

Ethnopharmacological Relevance: Cornus officinalis (CO) has been widely used as Chinese herbal medicine and has a good clinical efficacy in liver disease. In particular, it has a significant therapeutic effect on metabolic liver disease. However, systematic pharmacological studies on its hepatoprotective effect on non-alcoholic fatty liver disease (NAFLD) are lacking.

View Article and Find Full Text PDF

Introduction: The ingestion of nanomaterials (NMs) may impair the intestinal barrier, but the underlying mechanisms remain evasive, and evidence has not been systematically gathered or produced. A mechanistic-based approach would be instrumental in assessing whether relevant NMs disrupt the intestinal barrier, thereby supporting the NM risk assessment in the food sector.

Methods: In this study, we developed an adverse outcome pathway (AOP) based on biological plausibility and by leveraging information from an existing NM-relevant AOP that leads to hepatic outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!