A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A rapid zebrafish embryo behavioral biosensor that is capable of detecting environmental β-blockers. | LitMetric

A rapid zebrafish embryo behavioral biosensor that is capable of detecting environmental β-blockers.

Environ Pollut

University of Calgary, Department of Biological Sciences, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada. Electronic address:

Published: July 2019

β-Blockers (BB) are one of the most commonly prescribed pharmaceuticals used for treating cardiovascular and acute anxiety-related disorders. This class of drugs inhibit β-adrenoceptor signalling and given their growing, widespread use, BB are routinely detected in surface waters at nM concentrations. This is concerning as trace levels of BB impart developmental and reproductive dysfunction in non-target aquatic organisms, with potential for ecological risks. To date, environmental pharmaceutical risks to non-target animals are not part of the monitoring framework due to the lack of bioassays for assessing their biological effects. Behavioral endpoints have the advantage of a systems-level integration of multiple sensory signals and motor responses for toxicity screening; however, they are not currently used for risk assessment of environmental contaminants. The zebrafish (Danio rerio) embryo photomotor response (zfPMR) has been used in high-throughput behavioral screenings for neuroactive drug effects at high, therapeutic concentrations. Our objective here was to examine if we could utilize the zfPMR for screening environmental levels of BB. Embryos were placed into 96-well plates, exposed to chemicals and/or municipal wastewater effluent (MWWE), and their zfPMRs were measured with video-analysis. To specifically target BB, embryos were co-treated with isoproterenol, a β-adrenergic agonist that stimulates the zfPMR, and the inhibition of isoproterenol-induced response was used as a biomarker of BB exposure. Our results reveal that the inhibition of isoproterenol-stimulated zfPMRs can be used as a biosensor capable of detecting BB in the parts-per-billion to parts-per-trillion in water samples, including diluted MWWE. The method developed detects BB in spite of the presence of other neuroactive compounds in water samples. This systems level approach of rapid screening for BB effects provides the most promising evidence to date that behavioral neuromodulation can be potentially applied for environmental effects monitoring of pharmaceuticals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.03.053DOI Listing

Publication Analysis

Top Keywords

biosensor capable
8
capable detecting
8
water samples
8
environmental
5
rapid zebrafish
4
zebrafish embryo
4
behavioral
4
embryo behavioral
4
behavioral biosensor
4
detecting environmental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!