The leading cause of breast cancer-associated death is metastasis. In 80% of solid tumors, metastasis via the lymphatic system precedes metastasis via the vascular system. However, the molecular properties of tumor cells as they exit the primary tumor into the afferent lymphatics en route to the sentinel lymph nodes (SLNs) are not yet known. Here, we developed an innovative technique that enables the collection of lymph and lymph-circulating tumor cells (LCTCs) en route to the SLN in an immunocompetent animal model of breast cancer metastasis. We found that the gene and protein expression profiles of LCTCs and blood-circulating tumor cells (BCTCs) as they exit the primary tumor are similar, but distinct from those of primary tumors and lymph node metastases (LNMs). LCTCs, but not BCTCs, exist in clusters, display a hybrid epithelial/mesenchymal phenotype and cancer stem cell-like properties, and are efficient metastatic precursors. These results demonstrate that tumor cells that metastasize through the lymphatic system are different from those spread by blood circulation. Understanding the relative contribution of these cells to overall peripheral blood-circulating tumor cells is important for cancer therapy. Whether these two types of cell occur in cancer patients remains to be determined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547792 | PMC |
http://dx.doi.org/10.1002/1878-0261.12494 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!