Volunteer-based plant monitoring in the UK has focused mainly on distribution mapping; there has been less emphasis on the collection of data on plant communities and habitats. Abundance data provide different insights into ecological pattern and allow for more powerful inference when considering environmental change. Abundance monitoring for other groups of organisms is well-established in the UK, e.g. for birds and butterflies, and conservation agencies have long desired comparable schemes for plants. We describe a new citizen science scheme for the UK (the 'National Plant Monitoring Scheme'; NPMS), with the primary aim of monitoring the abundance of plants at small scales. Scheme development emphasised volunteer flexibility through scheme co-creation and feedback, whilst retaining a rigorous approach to design. Sampling frameworks, target habitats and species, field methods and power are all described. We also evaluate several outcomes of the scheme design process, including: (i) landscape-context bias in the first two years of the scheme; (ii) the ability of different sets of indicator species to capture the main ecological gradients of UK vegetation; and, (iii) species richness bias in returns relative to a professional survey. Survey rates have been promising (over 60% of squares released have been surveyed), although upland squares are under-represented. Ecological gradients present in an ordination of an independent, unbiased, national survey were well-represented by NPMS indicator species, although further filtering to an entry-level set of easily identifiable species degraded signal in an ordination axis representing succession and disturbance. Comparison with another professional survey indicated that different biases might be present at different levels of participation within the scheme. Understanding the strengths and limitations of the NPMS will guide development, increase trust in outputs, and direct efforts for maintaining volunteer interest, as well as providing a set of ideas for other countries to experiment with.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485706 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215891 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!