A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Bayesian framework for the analysis of systems biology models of the brain. | LitMetric

A Bayesian framework for the analysis of systems biology models of the brain.

PLoS Comput Biol

Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.

Published: April 2019

Systems biology models are used to understand complex biological and physiological systems. Interpretation of these models is an important part of developing this understanding. These models are often fit to experimental data in order to understand how the system has produced various phenomena or behaviour that are seen in the data. In this paper, we have outlined a framework that can be used to perform Bayesian analysis of complex systems biology models. In particular, we have focussed on analysing a systems biology of the brain using both simulated and measured data. By using a combination of sensitivity analysis and approximate Bayesian computation, we have shown that it is possible to obtain distributions of parameters that can better guard against misinterpretation of results, as compared to a maximum likelihood estimate based approach. This is done through analysis of simulated and experimental data. NIRS measurements were simulated using the same simulated systemic input data for the model in a 'healthy' and 'impaired' state. By analysing both of these datasets, we show that different parameter spaces can be distinguished and compared between different physiological states or conditions. Finally, we analyse experimental data using the new Bayesian framework and the previous maximum likelihood estimate approach, showing that the Bayesian approach provides a more complete understanding of the parameter space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505968PMC
http://dx.doi.org/10.1371/journal.pcbi.1006631DOI Listing

Publication Analysis

Top Keywords

systems biology
16
biology models
12
experimental data
12
bayesian framework
8
maximum likelihood
8
likelihood estimate
8
data
6
bayesian
5
systems
5
models
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!