Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Systems biology models are used to understand complex biological and physiological systems. Interpretation of these models is an important part of developing this understanding. These models are often fit to experimental data in order to understand how the system has produced various phenomena or behaviour that are seen in the data. In this paper, we have outlined a framework that can be used to perform Bayesian analysis of complex systems biology models. In particular, we have focussed on analysing a systems biology of the brain using both simulated and measured data. By using a combination of sensitivity analysis and approximate Bayesian computation, we have shown that it is possible to obtain distributions of parameters that can better guard against misinterpretation of results, as compared to a maximum likelihood estimate based approach. This is done through analysis of simulated and experimental data. NIRS measurements were simulated using the same simulated systemic input data for the model in a 'healthy' and 'impaired' state. By analysing both of these datasets, we show that different parameter spaces can be distinguished and compared between different physiological states or conditions. Finally, we analyse experimental data using the new Bayesian framework and the previous maximum likelihood estimate approach, showing that the Bayesian approach provides a more complete understanding of the parameter space.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505968 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1006631 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!