Multifunctional Thermal Management Materials with Excellent Heat Dissipation and Generation Capability for Future Electronics.

ACS Appl Mater Interfaces

College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University, Chengdu 610065 , Sichuan , People's Republic of China.

Published: May 2019

Thermal management materials (TMMs) used in electronic devices are crucial for future electronics and technologies such as flexible electronics and artificial intelligence (AI) technologies. As future electronics will work in a more complicated circumstance, the overheating and overcooling problems can exist in the same electronics while the common TMMs cannot meet the demand of thermal management for future electronics. In this work, nacre-mimetic graphene-based films with super flexibility and durability (in over 10,000 tensile cycles), excellent capability to dissipate excess heat (20.84 W/(m·K) at only 16-22 μm thickness), and outstanding heating performance to generate urgent heat for electronics under extremely cold conditions are fabricated by a facile solution casting method, and the fabricated composites are proved to be superior multifunctional TMMs for the thermal management in electronic chips. In addition, the application of the paper-like films with high in-plane thermal conductivity to a flexible heat spreader and film heater is demonstrated by simulation using a finite volume method, which shows the high importance of the in-plane thermal conductivity in thermal management of electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b03885DOI Listing

Publication Analysis

Top Keywords

thermal management
20
future electronics
16
management materials
8
electronics
8
high in-plane
8
in-plane thermal
8
thermal conductivity
8
thermal
6
management
5
multifunctional thermal
4

Similar Publications

Irreversible electroporation is a promising non-thermal ablation method that has been shown to increase overall survival in locally advanced pancreatic cancer in some studies. However, higher quality studies with proper controls and randomization are required to establish its superiority when added with neoadjuvant chemotherapy over the current management of choice, which is chemotherapy alone. Further studies are required before establishment of any survival benefit in metastatic pancreatic carcinoma, and such evidence is lacking at present.

View Article and Find Full Text PDF

Temperature control is crucial for live cell imaging, particularly in studies involving plant responses to high ambient temperatures and thermal stress. This study presents the design, development, and testing of two cost-effective heating devices tailored for confocal microscopy applications: an aluminum heat plate and a wireless mini-heater. The aluminum heat plate, engineered to integrate seamlessly with the standard 160 mm × 110 mm microscope stage, supports temperatures up to 36°C, suitable for studies in the range of non-stressful warm temperatures (e.

View Article and Find Full Text PDF

Dynamic Brush Surface Inducing Mobile Crystallization for Sustainable Spray Cooling Using Saline.

Nano Lett

January 2025

School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan 450046, China.

Spray cooling, which dissipates heat through droplet evaporation, is an efficient cooling method. Using seawater instead of freshwater in spraying is appealing given the intensifying global water crisis. However, seawater-based cooling suffers from salt accumulation on hot surfaces.

View Article and Find Full Text PDF

The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.

View Article and Find Full Text PDF

Background: Catheter ablation is an effective treatment for atrial fibrillation (AF). Pulsed field ablation (PFA) has emerged as a novel energy modality, which relies on high-voltage electric fields to achieve cardiac tissue ablation. Data on its efficacy in the elderly are scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!