The temporal stability of communities is essential for the maintenance of ecosystem functioning across trophic levels. The stabilizing effect of biodiversity is, among other factors, modulated by the level of synchrony in population fluctuations among the species in the community. What drives community synchrony, however, remains largely unclear. Community synchrony can be affected by external drivers such as disturbances, but also by the properties of the community. Species with different ecological strategies should fluctuate less synchronously than more similar species; thus, an increase in diversity of ecological strategies should decrease synchrony, and increase the stability of the community. Here, using an exceptionally large data set of ground beetle trappings in Dutch heathlands (~370,000 individuals in 19 plots, each sampled between 9 and 36 yr), we assess the drivers of community stability and synchrony, and their relationship with disturbance, species richness, and functional diversity (FD). We found no effect of disturbance (fire and topsoil removal) on community stability or synchrony, probably because of unpredictable patterns of increase or decrease of the populations. Community synchrony was overall positive, giving more support for independent and positive correlation between species than for compensatory dynamics. Synchrony decreased with increasing FD, but not with species richness. Supporting this, we found that the more species pairs differ in their traits, the less synchronously their populations fluctuate, where 74% of all pairs showed no significant correlation. Significant positive synchrony (19% of species pairs) was concentrated among pairs with low trait dissimilarity, and the 7% of pairs with significant negative temporal correlation showed no relation with pairwise functional dissimilarity. The stabilizing effect of FD via decreased synchrony supports largely untested theoretical expectations that an increased diversity of functional strategies in a community will have a stabilizing effect on community abundance. We hypothesize that because competition is low in this community, the stabilizing effect of FD reflects interspecific variation in responses to environmental fluctuations rather than competition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.2748 | DOI Listing |
PLoS One
January 2025
College of Natural and Computational Sciences, Hawai'i Pacific University, Honolulu, HI, United States of America.
Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045.
Climate change is increasing the frequency of large-scale, extreme environmental events and flattening environmental gradients. Whether such changes will cause spatially synchronous, large-scale population declines depends on mechanisms that limit metapopulation synchrony, thereby promoting rescue effects and stability. Using long-term data and empirical dynamic models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity in environmental responses, and environmental gradients to assess their role in inhibiting synchrony across 36 marine fish and invertebrate species.
View Article and Find Full Text PDFPhys Life Rev
December 2024
Community Healthcare Center Dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Complexity Science Hub, Metternichgasse 8, 1080 Vienna, Austria; Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea. Electronic address:
Synchrony in neuronal networks is crucial for cognitive functions, motor coordination, and various neurological disorders. While traditional research has focused on pairwise interactions between neurons, recent studies highlight the importance of higher-order interactions involving multiple neurons. Both types of interactions lead to complex synchronous spatiotemporal patterns, including the fascinating phenomenon of chimera states, where synchronized and desynchronized neuronal activity coexist.
View Article and Find Full Text PDFEcol Lett
December 2024
Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA.
Mast seeding, the synchronous and highly variable production of seed crops by perennial plants, is a population-level phenomenon and has cascading effects in ecosystems. Mast seeding studies are typically conducted at the population/species level. Much less is known about synchrony in mast seeding between species because the necessary long-term data are rarely available.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2024
Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!