Importance: It has been suggested that persistent organic pollutants (POPs) are harmful to human health.

Objective: To investigate if POP levels in plasma are associated with future mortality.

Design, Setting, And Participants: Cohort study using data from the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study, collected between May 2001 and June 2004 when participants reached age 70 years. Participants were followed up for 5 years after the first examination. Mortality was tracked from age 70 to 80 years. Data analysis was conducted in January and February 2018.

Exposures: Eighteen POPs identified by the Stockholm Convention, including polychlorinated biphenyls (PCBs), organochlorine pesticides, and a brominated flame retardant, were measured in plasma levels by gas chromatography-mass spectrometry.

Main Outcomes And Measures: All-cause mortality.

Results: The study sample initially included 992 individuals (497 [50.1%] men) aged 70 years, who were examined between 2001 and 2004. At the second examination 5 years later, 814 individuals (82.1%; 412 [50.7%] women) completed follow-up. During a follow-up period of 10.0 years, 158 deaths occurred. When updated information on POP levels at ages 70 and 75 years was associated with all-cause mortality using Cox proportional hazard analyses, a significant association was found between hexa-chloro- through octa-chloro-substituted (highly chlorinated) PCBs and all-cause mortality (except PCB 194). The most significant association was observed for PCB 206 (hazard ratio [HR] for 1-SD higher natural log-transformed circulating PCB 206 levels, 1.55; 95% CI, 1.26-1.91; P < .001). Following adjustment for hypertension, diabetes, smoking, body mass index, and cardiovascular disease at baseline, most associations were no longer statistically significant, but PCBs 206, 189, 170, and 209 were still significantly associated with all-cause mortality (PCB 206: adjusted HR, 1.47; 95% CI, 1.19-1.81; PCB 189: adjusted HR, 1.29; 95% CI, 1.08-1.55; PCB 170: adjusted HR, 1.24; 95% CI, 1.02-1.52; PCB 209: adjusted HR, 1.29; 95% CI, 1.04-1.60). In a secondary analysis, these associations were mainly because of death from cardiovascular diseases rather than noncardiovascular diseases. Three organochlorine pesticides, including dichlorodiphenyldichloroethylene, and the brominated flame retardant diphenyl ether 47 were also evaluated but did not show any significant associations with all-cause mortality.

Conclusions And Relevance: Higher levels of highly chlorinated PCBs were associated with an increased mortality risk, especially from cardiovascular diseases. These results suggest that public health actions should be undertaken to minimize exposure to highly chlorinated PCBs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487572PMC
http://dx.doi.org/10.1001/jamanetworkopen.2019.3070DOI Listing

Publication Analysis

Top Keywords

persistent organic
8
organic pollutants
8
prospective investigation
8
investigation vasculature
8
vasculature uppsala
8
uppsala seniors
8
seniors pivus
8
pivus study
8
pop levels
8
age years
8

Similar Publications

Global emissions of polychlorinated naphthalenes from 1912 to 2050.

Nat Commun

December 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

Polychlorinated naphthalenes (PCNs) are persistent organic compounds that are regulated by the Stockholm Convention. Here, we estimate historical emissions from PCN production and use (1912-1987) and unintentional emissions from 20 categories (2000-2020). A random forest regression model projects emissions for 2020-2050.

View Article and Find Full Text PDF

Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.

View Article and Find Full Text PDF

Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L.

View Article and Find Full Text PDF

Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices.

ACS Cent Sci

December 2024

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level.

View Article and Find Full Text PDF

The impact of gradient variable temperature fermentation on the quality of cigar tobacco leaves.

Front Microbiol

December 2024

Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China.

Introduction: In order to enhance the quality of cigar tobacco leaves (CTLs), a gradient variable temperature fermentation approach was employed.

Methods: The temperature gradient demonstrated a gradual increase from low temperature (35 ± 2°C) to moderate temperature (45 ± 2°C), and then to high temperature (55 ± 2°C). Each temperature gradient underwent a 10-day fermentation process, resulting in a total duration of 30 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!