Pt-Based alloys enclosed with high-index facets (HIFs) generally show much higher specific catalytic activities than their counterparts with low-index facets in electro-catalytic reactions. However, the exposure of a certain Pt surface would require a well-defined nanostructure, which usually can only be obtained at larger sizes. Therefore, a low dispersion of Pt atoms in Pt-based alloys with HIFs would affect the atomic utilization of Pt, resulting in most of these Pt-based alloys exhibiting lower mass activity than commercial Pt/C and Pt black catalysts for electro-catalytic reactions. Herein, we address a novel strategy to divide the surface areas of larger sized nanocrystals into small surface area nanocrystals by in situ etching Pt-Fe-Mn concave cubes (CNCs) while maintaining the morphology of the Pt-Fe-Mn alloys to improve the utilization of Pt atoms and thus increase the mass activity. Remarkably, the Pt-Fe-Mn unique concave cube (UCNC) nanocrystals (NCs) showed much higher specific and mass activities toward the methanol oxidation reaction (MOR) than the Pt-Fe-Mn CNCs, commercial Pt black and Pt/C. The kinetic analysis from Tafel plots indicated that UCNC Pt-Fe-Mn NCs had the lowest Tafel slope at whole potentials and the splitting of the first C-H bond of a CH3OH molecule with the first electron transfer was the rate-determining step at high potentials (above 0.45 V). In situ Fourier transform infrared reflection (FTIR) spectroscopic investigation at the molecular level indicated that methanol chemical absorption took place at a low potential of -0.2 V at the UCNC NC electrode. Meanwhile, much higher CO2 productivity was observed at the UCNC NC electrode, indicating the strong anti-poisoning ability of the UCNC Pt-Fe-Mn NCs during methanol electrooxidation. Furthermore, in the formic acid oxidation (FAOR) test, the activity and long-term durability of the Pt-Fe-Mn UCNC NCs were also found to be superior to those of the Pt-Fe-Mn CNCs, commercial Pt black and Pt/C. The enhanced catalytic performance in both the MOR and FAOR is most probably due to the unique HIF structure consisting of small sized particles, enhanced Pt utilization, the richness of crystalline defects and synergetic effects of Pt, Fe, and Mn metals. Our present work provides an insight into the rational design of Pt based alloys with HIFs to improve the catalytic performance of electro-catalytic reactions for fundamental study.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr10231gDOI Listing

Publication Analysis

Top Keywords

pt-based alloys
12
electro-catalytic reactions
12
pt-fe-mn
9
situ etching
8
high-index facets
8
higher specific
8
alloys hifs
8
mass activity
8
pt-fe-mn cncs
8
cncs commercial
8

Similar Publications

The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.

View Article and Find Full Text PDF

Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.

View Article and Find Full Text PDF
Article Synopsis
  • Ammonia is seen as a promising hydrogen carrier due to its efficiency, easier storage, and established infrastructure, allowing for on-demand hydrogen generation via electrochemical ammonia oxidation.
  • The study investigates bimetallic PtRh alloy catalysts, which show improved performance in the ammonia oxidation reaction (AOR) compared to standard platinum catalysts, indicating lower energy requirements and better activity.
  • X-ray photoelectron spectroscopy reveals that the Rh component modifies the electronic properties of Pt, reducing issues with catalyst poisoning, thereby enhancing the understanding of AOR mechanisms for future catalyst design.
View Article and Find Full Text PDF

2D Carbon-Anchored Platinum-Based Nanodot Arrays as Efficient Catalysts for Methanol Oxidation Reaction.

Small Methods

December 2024

Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China.

Article Synopsis
  • Ultrafine Pt-based alloy nanoparticles supported on carbon are promising for catalysis but struggle with stability issues that limit their use.
  • A new approach uses nanodot arrays where these nanoparticles are securely implanted in a 2D carbon substrate, leading to high methanol oxidation reaction activity and improved stability.
  • This innovative anchoring method optimizes their electronic structure, reduces nanoparticle migration, and prevents transition metal dissolution, paving the way for more durable and effective catalytic materials.
View Article and Find Full Text PDF

Improvement in the durable and active low-Pt nanocatalysts for oxygen reduction reaction (ORR) is the essential target for clean energy. Herein, an efficient CeO supported PtCu alloy catalyst (PtCu/CeO-C) for ORR in acid media is developed. The CeO support can effectively anchor the PtCu particles and inhibit their migration during the long-life cycling, which is beneficial to the catalytic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!