In this article, we explore the unique adaptations of intracellular bacterial pathogens that manipulate conserved cellular pathways, organelles, and cargo to convert the phagosome into a pathogen-containing vacuole (PCV). The phagosome is a degradative organelle that rapidly acidifies as it delivers cargo to the lysosome to destroy microbes and cellular debris. However, to avoid this fate, intracellular bacterial pathogens hijack the key molecular modulators of intracellular traffic: small GTPases, phospholipids, SNAREs, and their associated effectors. Following uptake, pathogens that reside in the phagosome either remain associated with the endocytic pathway or rapidly diverge from the preprogrammed route to the lysosome. Both groups rely on effector-mediated mechanisms to meet the common challenges of intracellular life, such as nutrient acquisition, vacuole expansion, and evasion of the host immune response. , , and serve as a lens through which we explore regulators of the canonical endocytic route and pathogens that seek to subvert it. On the other hand, pathogens such as , , and disconnect from the canonical endocytic route. This bifurcation is linked to extensive hijacking of the secretory pathway and repurposing of the PCV into specialized compartments that resemble organelles in the secretory network. Finally, each pathogen devises specific strategies to counteract host immune responses, such as autophagy, which aim to destroy these aberrant organelles. Collectively, each unique intracellular niche and the pathogens that construct them reflect the outcome of an aggressive and ongoing molecular arms race at the host-pathogen interface. Improving our understanding of these well-adapted pathogens can help us refine our knowledge of conserved cell biological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590418 | PMC |
http://dx.doi.org/10.1128/microbiolspec.BAI-0022-2019 | DOI Listing |
Alzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFBackground: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFBackground: The hyperphosphorylation, mislocalization, and aggregation of the microtubule associated protein Tau (MAPT) is a driving force in tauopathies, a group of progressive, neurodegenerative disorders. These pathogenic intracellular aggregates, known as neurofibrillary tangles (NFTs), are a hallmark in several diseases such as frontotemporal dementia, progressive supranuclear palsy, and Alzheimer's Disease. While anti-Tau immunotherapies emphasize the clearance of extracellular Tau aggregates, they do not address the intracellular accumulation of NFTs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).
Background: Abnormal aggregation and accumulation of tau is a hallmark of tauopathy including Alzheimer's disease. Effective targeting of tau for therapeutic purposes requires a clear understanding of its epitope landscape with identification of a key pathogenic tau species. Despite numerous proposed and tested tau epitopes, ranging from the N-terminus to the microtubule-binding region and C-terminus, the most effective target remains elusive.
View Article and Find Full Text PDFBackground: A large body of evidence now indicates that the most pathogenic species of Aß in Alzheimer's disease (AD) consist of soluble toxic oligomers (AßO) as opposed to insoluble fibrils and monomers. Using our computational platform, we identified 4 different AßO-restricted conformational B cell epitopes (300, 301, 303, 305) that were tested as vaccines for their ability to induce an antibody response that selectively targets toxic AßO, without inducing potentially detrimental B or T cell responses against plaque or normal Aß. A novel ex vivo approach was then used to select an optimal vaccine configuration amongst the 15 possible combinations of the 4 epitopes to provide maximal binding to a toxic oligomer-enriched low molecular weight (LMW) fraction of soluble AD brain extracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!