The present study explored the role of endothelin-1, HS, and Nrf2 in remote preconditioning (RIPC)-induced beneficial effects in ischemia-reperfusion (I/R)-induced vascular dementia. Mice were subjected to 20 min of global ischemia by occluding both carotid arteries to develop vascular dementia, which was assessed using Morris water maze test on 7th day. RIPC was given by subjecting hind limb to four cycles of ischemia (5 min) and reperfusion (5 min) and it significantly restored I/R-induced locomotor impairment, neurological severity score, cerebral infarction, apoptosis markers along with deficits in learning and memory. Biochemically, there was increase in the plasma levels of endothelin-1 along with increase in the brain levels of HS and its biosynthetic enzymes viz., cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CLS). There was also an increase in the expression of Nrf2 and glutathione reductase in the brain in response to RIPC. Pretreatment with bosentan (dual blocker of ET and ET receptors), amino-oxyacetic acid (CBS synthase inhibitor), and DL-propargylglycine (CLS inhibitor) significantly attenuated RIPC-mediated beneficial effects and biochemical alterations. The effects of bosentan on behavioral and biochemical parameters were more significant than individual treatments with CBS or CLS inhibitors. Moreover, CBS and CLS inhibitors did not alter the endothelin-1 levels possibly suggesting that endothelin-1 may act as upstream mediator of HS. It is concluded that RIPC may stimulate the release endothelin-1, which may activate CBS and CLS to increase the levels of HS and latter may increase the expression of Nrf2 to decrease oxidative stress and prevent vascular dementia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10571-019-00670-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!