In the beginning of the twenty-first century, humanity faces great challenges regarding diseases and health-related quality of life. A drastic rise in bacterial antibiotic resistance, in the number of cancer patients, in the obesity epidemics and in chronic diseases due to life expectation extension are some of these challenges. The discovery of novel therapeutics is fundamental and it may come from underexplored environments, like marine habitats, and microbial origin. are well-known as treasure chests for the discovery of novel natural compounds. In this study, eighteen isolated from marine sponges of three genera collected in Portuguese waters were tested for bioactivities with the main goal of isolating and characterizing the responsible bioactive metabolites. The screening comprehended antimicrobial, anti-fungal, anti-parasitic, anti-cancer and anti-obesity properties. Fermentations of the selected strains were prepared using ten different culturing media. Several bioactivities against the fungus , the bacteria methicillin-resistant (MRSA) and the human liver cancer cell line HepG2 were obtained in small volume cultures. Screening in higher volumes showed consistent anti-fungal activity by strain sp. #91-17 and Berg02-26. sp. Berg02-22.2 showed anti-parasitic () and anti-cancer activity against several cell lines (melanoma A2058, liver HepG2, colon HT29, breast MCF7 and pancreatic MiaPaca). For the anti-obesity assay, #91-29 and #91-40 induced lipid reduction on the larvae of zebrafish (). Dereplication of the extracts from several bacteria showed the existence of a variety of secondary metabolites, with some undiscovered molecules. This work showed that are indeed good candidates for drug discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467163PMC
http://dx.doi.org/10.3389/fmicb.2019.00727DOI Listing

Publication Analysis

Top Keywords

isolated marine
8
marine sponges
8
discovery novel
8
anti-parasitic anti-cancer
8
bioactivities extract
4
extract dereplication
4
dereplication isolated
4
sponges twenty-first
4
twenty-first century
4
century humanity
4

Similar Publications

Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.

View Article and Find Full Text PDF

Performance, kinetics, and mechanism of 1,2,3-trimethylbenzene biodegradation by a newly isolated marine microalga.

J Environ Manage

January 2025

Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.

Recently, marine pollution by the accidental spills of C9 aromatics has raised public concerns, especially for 1,2,3-trimethylbenzene (1,2,3-TMB) because it is high-toxic and refractory. However, insufficient understanding of molecular mechanism underlying the biodegradation of 1,2,3-TMB hindered research on its bioremediation. In addition, microalgae-mediated bioremediation is popular due to its eco-friendliness and carbon sequestration.

View Article and Find Full Text PDF

The fish intestine is a complex ecosystem where microbial communities are dynamic and influenced by various factors. Preservation conditions during field collection can introduce biases affecting the microbiota amplified during sequencing. Therefore, establishing effective, standardized methods for sampling fish intestinal microbiota is crucial.

View Article and Find Full Text PDF

Understanding the relative contributions of environmental, behavioural and social factors to reproductive success is crucial for predicting population dynamics of seabirds. However, these factors are often studied in isolation, limiting our ability to evaluate their combined influence. This study investigates how marine environmental variables, foraging behaviour and social factors (divorce), influence reproductive success in little penguins () over 13 breeding seasons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!