Antipsychotics are the first-line medications prescribed for patients with schizophrenia or other mental disorders. Cumulative evidence has revealed that metabolic dysfunctions frequently occur in patients receiving antipsychotics, especially second-generation antipsychotics, and these effects may decrease patient compliance and increase health costs. Metformin is an effective pharmaceutical adjuvant for ameliorating antipsychotic-induced metabolic dysfunction (AIMD) in clinical practice. However, the mechanism of the effects of metformin on AIMD remains unclear. The gut-brain axis is a bidirectional communication system between the gastrointestinal tract and the central nervous system and has been associated with many pathological and physiological conditions, such as those related to metabolism. Antipsychotics interact with and have affinity for dopamine receptors and other receptors in the brain, and treatment with these antipsychotics has been shown to influence gut microbiota metabolism and composition, as observed in both animal and human studies. Metformin exerts an antidiabetic effect that is correlated with activation of AMP-kinase in the hypothalamus, and metformin also influences gut flora. Therefore, the gut-brain axis may play a role in the effect of metformin on AIMD. Since no direct evidence is available, this perspective may provide a direction for further research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6465968 | PMC |
http://dx.doi.org/10.3389/fphar.2019.00371 | DOI Listing |
Neuromolecular Med
January 2025
Pharmacy College, Al-Farahidi University, Baghdad, Iraq.
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma.
View Article and Find Full Text PDFSupport Care Cancer
January 2025
Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103 - 1090, Brussels, Belgium.
Introduction: The study's primary goal is to investigate differences in postprandial glycaemic response (PPGR) to beverages with varying glycaemic index (i.e. low and medium) between breast cancer survivors (BCS) with chronic pain and healthy pain-free controls (HC).
View Article and Find Full Text PDFGut Microbes
December 2025
Univ Rouen Normandie, INSERM, Normandie Univ, ADEN, UMR 1073 Nutrition, Inflammation and Microbiota-Gut-Brain axis, Rouen, France.
Gut bacteria play key roles in intestinal physiology, via the secretion of diversified bacterial effectors. Many of these effectors remodel the host proteome, either by altering transcription or by regulating protein post-translational modifications. SUMOylation, a ubiquitin-like post-translational modification playing key roles in intestinal physiology, is a target of gut bacteria.
View Article and Find Full Text PDFAgeing Res Rev
January 2025
Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, P R China; School of Medicine and Allied Health Sciences, University of The Gambia; Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China. Electronic address:
The trillions of microbial populations residing in the gut have recently shown that they can be used as a remedy for various diseases. The gut microbiota-brain-axis interface is one unique pathway that the microbiota demonstrates its medicinal value. This medicinal value is further seen when there is a decline in gut microbial diversity (dysbiosis).
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Fonterra Microbiome Research Centre, University College Cork, Cork, Ireland.
Advancing microbiome-gut-brain axis science requires systematic, rational and translational approaches to bridge the critical knowledge gaps currently preventing full exploitation of the gut microbiome as a tractable therapeutic target for gastrointestinal, mental and brain health. Current research is still marked by many open questions that undermine widespread application to humans. For example, the lack of mechanistic understanding of probiotic effects means it remains unclear why even apparently closely related strains exhibit different effects in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!