Brain-derived neurotrophic factor (BDNF) is a neurotrophin that has pleiotropic effects on neuronal morphology and synaptic plasticity that underlie hippocampal circuit development and cognition. Recent advances established that BDNF function is controlled and diversified by molecular and cellular mechanisms including trafficking and subcellular compartmentalization of different mRNA species, pre- vs. postsynaptic release of BDNF, control of BDNF signaling by tropomyosin receptor kinase B (TrkB) receptor interactors and conversion of pro-BDNF to mature BDNF and BDNF-propeptide. Defects in these regulatory mechanisms affect dendritic spine formation and morphology of pyramidal neurons as well as synaptic integration of newborn granule cells (GCs) into preexisting circuits of mature hippocampus, compromising the cognitive function. Here, we review recent findings describing novel dynamic mechanisms that diversify and locally control the function of BDNF in hippocampal neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6465932 | PMC |
http://dx.doi.org/10.3389/fncel.2019.00135 | DOI Listing |
Elife
January 2025
Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States.
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
SrFeO (SFO) offers a topotactic phase transformation between an insulating brownmillerite SrFeO (BM-SFO) phase and a conductive perovskite SrFeO (PV-SFO) phase, making it a competitive candidate for use in resistive memory and neuromorphic computing. However, most of existing SFO-based memristors are nonvolatile devices which struggle to achieve short-term synaptic plasticity (STP). To address this issue and realize STP, we propose to leverage ferroelectric polarization to effectively draw ions across the interface so that the PV-SFO conductive filaments (CFs) can be ruptured in absence of an external field.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macao SAR, China.
Objective: Depression is a mental disorder that significantly impairs both physical and mental health. Recent studies have shown that reactive astrogliosis have gained significant attention for their involvement in the pathophysiology of depression. However, there is no bibliometric analysis in this research field.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!