We establish autosomal recessive DES variants p.(Leu190Pro) and a deep intronic splice variant causing inclusion of a frameshift-inducing artificial exon/intronic fragment, as the likely cause of myopathy with cardiac involvement in female siblings. Both sisters presented in their twenties with slowly progressive limb girdle weakness, severe systolic dysfunction, and progressive, severe respiratory weakness. Desmin is an intermediate filament protein typically associated with autosomal dominant myofibrillar myopathy with cardiac involvement. However a few rare cases of autosomal recessive desminopathy are reported. In this family, a paternal missense p.(Leu190Pro) variant was viewed unlikely to be causative of autosomal dominant desminopathy, as the father and brothers carrying this variant were clinically unaffected. Clinical fit with a DES-related myopathy encouraged closer scrutiny of all DES variants, identifying a maternal deep intronic variant within intron-7, predicted to create a cryptic splice site, which segregated with disease. RNA sequencing and studies of muscle cDNA confirmed the deep intronic variant caused aberrant splicing of an artificial exon/intronic fragment into maternal DES mRNA transcripts, encoding a premature termination codon, and potently activating nonsense-mediate decay (92% paternal DES transcripts, 8% maternal). Western blot showed 60-75% reduction in desmin levels, likely comprised only of missense p.(Leu190Pro) desmin. Biopsy showed fibre size variation with increased central nuclei. Electron microscopy showed extensive myofibrillar disarray, duplication of the basal lamina, but no inclusions or aggregates. This study expands the phenotypic spectrum of recessive DES cardio/myopathy, and emphasizes the continuing importance of muscle biopsy for functional genomics pursuit of 'tricky' variants in neuromuscular conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777463PMC
http://dx.doi.org/10.1038/s41431-019-0393-6DOI Listing

Publication Analysis

Top Keywords

recessive des
12
deep intronic
12
des cardio/myopathy
8
intronic splice
8
splice variant
8
autosomal recessive
8
des variants
8
artificial exon/intronic
8
exon/intronic fragment
8
myopathy cardiac
8

Similar Publications

Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.

Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.

View Article and Find Full Text PDF

Hereditary spastic paraplegias (HSP) are a diverse group of neurodegenerative diseases characterized by lower limb spasticity and weakness. To date, over 80 genes have been associated with HSP, but many families remain without a molecular diagnosis. In this study, linkage analysis and whole-exome sequencing (WES) were performed to identify the causal gene in a HSP family with autosomal recessive inheritance.

View Article and Find Full Text PDF

Congenital titinopathies reported to date show autosomal recessive inheritance and are caused by a variety of genomic variants, most of them located in metatranscript (MTT)-only exons. The aim of this study was to describe additional patients and establish robust genotype-phenotype associations in titinopathies. This study involved analyzing molecular, clinical, pathological, and muscle imaging features in 20 patients who had at least one pathogenic or likely pathogenic variant in MTT-only exons, with onset occurring antenatally or in the early postnatal stages.

View Article and Find Full Text PDF

Taybi-Linder syndrome (TALS) is a rare autosomal recessive disorder characterized by severe microcephaly with abnormal gyral pattern, severe growth retardation and bone abnormalities. It is caused by pathogenic variants in the RNU4ATAC gene. Its transcript, the small nuclear RNA U4atac, is involved in the excision of ~850 minor introns.

View Article and Find Full Text PDF

The AGBL5 gene encodes for the Cytoplasmic Carboxypeptidase 5 (CCP5), an α-tubulin deglutamylase that cleaves the γ-carboxyl-linked branching point of glutamylated tubulin. To date, pathogenic variants in AGBL5 have been associated only with isolated retinitis pigmentosa (RP). Hearing loss has not been reported in AGBL5-caused retinal disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!