Stem cells are emerging as a therapeutic option for incurable diseases, such as Amyotrophic Lateral Sclerosis (ALS). However, critical issues are related to their origin as well as to the need to deepen our knowledge of the therapeutic actions exerted by these cells. Here, we investigate the therapeutic potential of clinical-grade human neural stem cells (hNSCs) that have been successfully used in a recently concluded phase I clinical trial for ALS patients (NCT01640067). The hNSCs were transplanted bilaterally into the anterior horns of the lumbar spinal cord (four grafts each, segments L3-L4) of superoxide dismutase 1 G93A transgenic rats (SOD1 rats) at the symptomatic stage. Controls included untreated SOD1 rats (CTRL) and those treated with HBSS (HBSS). Motor symptoms and histological hallmarks of the disease were evaluated at three progressive time points: 15 and 40 days after transplant (DAT), and end stage. Animals were treated by transient immunosuppression (for 15 days, starting at time of transplantation). Under these conditions, hNSCs integrated extensively within the cord, differentiated into neural phenotypes and migrated rostro-caudally, up to 3.77 ± 0.63 cm from the injection site. The transplanted cells delayed decreases in body weight and deterioration of motor performance in the SOD1 rats. At 40DAT, the anterior horns at L3-L4 revealed a higher density of motoneurons and fewer activated astroglial and microglial cells. Accordingly, the overall survival of transplanted rats was significantly enhanced with no rejection of hNSCs observed. We demonstrated that the beneficial effects observed after stem cell transplantation arises from multiple events that counteract several aspects of the disease, a crucial feature for multifactorial diseases, such as ALS. The combination of therapeutic approaches that target different pathogenic mechanisms of the disorder, including pharmacology, molecular therapy and cell transplantation, will increase the chances of a clinically successful therapy for ALS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484011PMC
http://dx.doi.org/10.1038/s41419-019-1582-5DOI Listing

Publication Analysis

Top Keywords

sod1 rats
16
stem cells
12
clinical-grade human
8
human neural
8
neural stem
8
anterior horns
8
cell transplantation
8
cells
6
rats
6
transplantation
4

Similar Publications

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

High-intensity interval training improves hepatic redox status via Nrf2 downstream pathways and reduced CYP2E1 expression in female rats with cisplatin-induced hepatotoxicity.

Food Chem Toxicol

December 2024

Instituto Multidisciplinar em Saúde - Campus Anísio Teixeira, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil; Programa de Pós-Graduação em Biociências, Vitória da Conquista, Bahia, 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - PPGM-SBFis. Vitória da Conquista, Bahia, 45029-094, Brazil.

Cisplatin (CP) is an antineoplastic drug associated with various cytotoxic adverse effects, including hepatotoxicity. Exercise training may offer hepatoprotection by improving redox status. This study compared the effects of light-intensity continuous training (LICT), moderate-intensity continuous training (MICT), and high-intensity interval training (HIIT) on CP-induced hepatotoxicity in female Wistar rats.

View Article and Find Full Text PDF

Blockade of PVN neuromedin B receptor alleviates inflammation via the RAS/ROS/NF-κB pathway in spontaneously hypertensive rats.

Brain Res Bull

December 2024

Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China. Electronic address:

Neuromedin B (NMB) has potentially great impacts on the development of cardiovascular diseases by promoting hypertensive and sympatho-excitation effects. However, studies regarding the NMB function in paraventricular nucleus (PVN) are lacking. With selective neuromedin B receptor (NMBR) antagonist, BIM-23127, we aim to determine whether the blockade of NMB function in PVN could alleviate central inflammation and attenuate hypertensive responses.

View Article and Find Full Text PDF

The burden of neurological disorders is growing substantially with limited therapeutic options, urging the consideration and assessment of alternative strategies. In this regard, we aimed to elucidate the phytochemical profile of the petroleum ether extract (PEE) of three palm tree species: Burret, H. Wendl.

View Article and Find Full Text PDF

Amplification of Metalloregulatory Proteins in Macrophages by Bioactive ZnMn@SF Hydrogels for Spinal Cord Injury Repair.

ACS Nano

December 2024

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.

Macrophages are rapidly activated and polarized toward the M1 phenotype after spinal cord injury (SCI), and inhibiting M1-like macrophages has emerged as a promising SCI treatment approach. Metalloregulatory proteins, which sense specific metal ions with high affinity and specificity, play a critical role in immune regulation. Here, we screened various bioactive metal ions associated with metalloregulatory proteins and discovered that Zn and Mn effectively suppressed M1 polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!