Viewing the atomic-scale motion and energy dissipation pathways involved in forming a covalent bond is a longstanding challenge for chemistry. We performed scattering experiments of H atoms from graphene and observed a bimodal translational energy loss distribution. Using accurate first-principles dynamics simulations, we show that the quasi-elastic channel involves scattering through the physisorption well where collision sites are near the centers of the six-membered C-rings. The second channel results from transient C-H bond formation, where H atoms lose 1 to 2 electron volts of energy within a 10-femtosecond interaction time. This remarkably rapid form of intramolecular vibrational relaxation results from the C atom's rehybridization during bond formation and is responsible for an unexpectedly high sticking probability of H on graphene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aaw6378 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!