Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0885328219845083 | DOI Listing |
Biomacromolecules
June 2023
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
This study aimed to develop a multifunctional polymer platform that could address the issue of treatment resistance when using conventional chemotherapeutics to treat glioblastoma (GBM). An antibody-conjugated, multi-drug loaded hyperbranched polymer was developed that provided a platform to evaluate the role of targeted nanomedicine treatments in overcoming resistant GBM by addressing the various complications with current clinically administered formulations. The polymer was synthesized via reversible addition fragmentation chain transfer polymerization and included the clinical first-line alkylating agent temozolomide (TMZ) which was incorporated as a polymerizable monomer, poly (ethylene glycol) (PEG) units to impart biocompatibility and enable conjugation with αPEG-αEphA2 bispecific antibody (αEphA2 BsAb) for tumor targeting, and hydrazide moieties for attachment of a secondary drug which allows exploration of synergistic therapies.
View Article and Find Full Text PDFBiomacromolecules
October 2022
Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
Intracellular bacterial infections pose a serious threat to public health. Macrophages are a heterogeneous population of immune cells that play a vital role in intracellular bacterial infection. However, bacteria that survive inside macrophages could subvert the cell signaling and eventually reduce the antimicrobial activity of macrophages.
View Article and Find Full Text PDFMolecules
February 2020
College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.
A series of new hyperbranched aliphatic poly(β-thioether ester)s were prepared by the enzymatic ring-opening polycondensation of 1,4-oxathiepan-7-one (OTO) and AB/ABB' comonomer with acid-labile β-thiopropionate groups. Two kinds of comonomers, methyl 3-((3-hydroxy-2-(hydroxymethyl)propyl)thio)propanoate (HHTP) and methyl 3-((2,3-dihydroxypropyl)thio)propanoate (DHTP), with different primary alcohols and secondary alcohols, were synthesized by thiol-ene click chemistry and thiol-ene Michael addition, respectively. Immobilized lipase B from (CALB), Novozym 435, was used as the catalyst.
View Article and Find Full Text PDFJ Biomater Appl
July 2019
Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China.
Biomacromolecules
January 2018
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany.
An adaptable approach toward cleavable nanoparticle carrier systems for photodynamic therapy (PDT) is presented, comprising a biocompatible carrier loaded with multiple photosensitizer (PS) molecules related to the clinically employed PS Temoporfin, two linkers cleavable under different triggers and glyco-targeting with mannose. A synthetic pathway to stimuli responsive hyperbranched polyglycerol (hPG) porphyrin conjugates via the copper(I)-catalyzed 1,3-dipolar cycloaddition (CuAAC) or the strain-promoted alkyne-azide cycloaddition (SPAAC) has been developed. The PS 10,15,20-tris(3-hydroxyphenyl)-5-(2,3,4,5,6-pentafluorophenyl)porphyrin was functionalized with disulfide containing cystamine and acid-labile benzacetal linkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!