Background: Recent reports in rat models have shown that fibroblasts in the epiligament, an enveloping tissue of the ligament, are not static cells and play an important role during the early ligament healing of isolated grade III injury of the collateral ligaments of the knee. Fibroblasts produce collagen types I, III and V and infiltrate within the ligament body via the endoligament. In addition, similarities have been reported between the structure of the epiligament of the medial collateral ligament and anterior cruciate ligament of the knee in rat and in human. In line with the ascribed role of the epiligament tissue and the synthesis of these collagens and their role in ligament healing, the aim of this study was to determine their presence in the normal epiligament of the aforementioned ligaments in humans, to compare their differential expression and to present a novel hypothesis about the failure of healing of the anterior cruciate ligament in contrast to the medial collateral ligament.

Materials And Methods: We used samples from the mid-substance of the medial collateral and the anterior cruciate ligament of the knee joint, acquired from 12 fresh knee joints. Routine histological analysis was performed through hematoxylin and eosin stain, Mallory's trichrome stain and Van Gieson's stain. The immunohistochemical analysis was conducted using monoclonal antibodies against collagen type I and V and procollagen type III. The number of cells in the epiligament, endoligament and the ligament tissue was assessed quantitatively through a computerized system for image analysis NIS-Elements Advanced Research and Statistica software.

Results: Our observations revealed certain differences in the morphology of the epiligament, as well as variations in the expression of the investigated molecules. Expression of collagen type I was mostly low-positive (1+) in the epiligament and positive (2+) in the ligament tissue of both ligaments. Expression of procollagen type III was mostly positive (2+) in the epiligament and ligament tissue of the medial collateral ligament, low-positive (1+) in the epiligament and negative (0) in ligament tissue of the anterior cruciate ligament. Expression of collagen type V was predominantly low-positive (1+) in the epiligament and negative (0) in the ligament tissue of both ligaments. The immunoreactivity for all three molecules was always higher in the epiligament of the medial collateral ligament than that of the anterior cruciate ligament.

Conclusions: The results of our study illustrate for the first time that fibroblasts in the human epiligament are indeed responsible for the synthesis of the main types of collagen participating in the early ligament healing, thus corresponding to previous data of the medial collateral ligament healing in animal models. The differences between the epiligament of the investigated ligaments could add a novel explanation for the failed anterior cruciate ligament healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aanat.2019.04.002DOI Listing

Publication Analysis

Top Keywords

medial collateral
28
anterior cruciate
28
cruciate ligament
24
ligament
20
ligament healing
20
ligament tissue
20
collagen type
16
collateral ligament
16
epiligament
14
epiligament medial
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!