Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2019.03.1153DOI Listing

Publication Analysis

Top Keywords

enhanced intrinsic
4
intrinsic skin
4
skin aging
4
aging nephropathic
4
nephropathic cystinosis
4
cystinosis assessed
4
assessed high-definition
4
high-definition optical
4
optical coherence
4
coherence tomography
4

Similar Publications

Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a notably poor response to therapy due to its immunosuppressive tumor microenvironment (TME) and intrinsic drug resistance. The oncolytic virus (OV) represents a promising therapeutic strategy capable of transforming the "cold" immunological profile of PDAC tumors to a "hot" one by reshaping the TME. 4-1BB (CD137), a crucial member of the tumor necrosis factor receptor superfamily, plays a significant role in T-cell activation and function.

View Article and Find Full Text PDF

Frequency-modulated continuous-wave (FMCW) radar is used to extract range and velocity information from the beat signal. However, the traditional joint range-velocity estimation algorithms often experience significant performances degradation under low signal-to-noise ratio (SNR) conditions. To address this issue, this paper proposes a novel approach utilizing the complementary ensemble empirical mode decomposition (CEEMD) combined with singular value decomposition (SVD) to reconstruct the beat signal prior to applying the FFT-Root-MUSIC algorithm for joint range and velocity estimation.

View Article and Find Full Text PDF

Detection and Quantification of DNA by Fluorophore-Induced Plasmonic Current: A Novel Sensing Approach.

Sensors (Basel)

December 2024

Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.

We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex.

View Article and Find Full Text PDF

Localization accuracy in non-line-of-sight (NLOS) scenarios is often hindered by the complex nature of multipath propagation. Traditional approaches typically focus on NLOS node identification and error mitigation techniques. However, the intricacies of NLOS localization are intrinsically tied to propagation challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!