The Tec kinases ITK (interleukin-2-inducible T-cell kinase) and RLK (resting lymphocyte kinase) are critical components of the proximal TCR/CD3 signal transduction machinery, and data in mice suggest that ITK negatively modulates regulatory T cell (TREG) differentiation. However, whether Tec kinases modulate TREG development and/or function in human T cells remains unknown. Using a novel self-delivery siRNA platform (sdRNA), we found that ITK knockdown in human primary naïve peripheral blood CD4 T cells increased Foxp3+ expression under both TREG and T helper priming conditions. TREG differentiated under ITK knockdown conditions exhibited enhanced expression of the co-inhibitory receptor PD-1 and were suppressive in a T cell proliferation assay. ITK knockdown decreased IL-17A production in T cells primed under Th17 conditions and promoted Th1 differentiation. Lastly, a dual ITK/RLK Tec kinase inhibitor did not induce Foxp3 in CD4 T cells, but conversely abrogated Foxp3 expression induced by ITK knockdown. Our data suggest that targeting ITK in human T cells may be an effective approach to boost TREG in the context of autoimmune diseases, but concomitant inhibition of other Tec family kinases may negate this effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483201PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215963PLOS

Publication Analysis

Top Keywords

itk knockdown
16
interleukin-2-inducible t-cell
8
t-cell kinase
8
itk
8
itk human
8
treg differentiation
8
differentiation tec
8
tec kinases
8
human cells
8
cd4 cells
8

Similar Publications

Chimeric antigen receptor T cells (CAR T cells) with T stem (T) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human T cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RACCR7TCF1 T cell-like CAR T cells from both healthy donors and patients with cancer.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis.

View Article and Find Full Text PDF

Unlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of microRNA (miR)-155 in inflammation related to Graves' orbitopathy (GO) by comparing its expression levels in GO and non-GO orbital tissues.
  • It finds that miR-155 is overexpressed in GO tissues and is induced by inflammatory stimuli like IL-1β and TNF-α, influencing inflammatory proteins and IL-2-inducible T-cell kinase (ITK) expression.
  • The research suggests that miR-155 has anti-inflammatory effects in GO orbital fibroblasts by repressing ITK expression, highlighting its potential for new therapeutic strategies for GO treatment.
View Article and Find Full Text PDF

Peripheral T‑cell lymphomas (PTCLs) are heterogeneous malignancies that are types of non‑Hodgkin lymphomas; patients with this disease have poor prognoses. The IL‑2‑inducible T‑cell kinase‑spleen tyrosine kinase (ITK‑SYK) fusion gene, the first recurrent chromosome translocation in PTCL‑not otherwise specified (NOS), can drive cellular transformation and the development of T‑cell lymphoma in mouse models. The aim of the current study was to investigate the signal transduction pathways downstream of ITK‑SYK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!