Study Design: laboratory research.

Background: Through the increasing number of minimally invasive procedures in spinal fusion surgery, the complete removal of intervertebral disc (IVD) tissue has become more a challenge. Remaining IVD may interfere with the biological process of bone formation.

Objective: In order to establish whether complete removal of IVD tissue will improve or inhibit the fusion process, the effects of different concentrations of extracts of inflamed disc tissue on the mitochondrial activity of mesenchymal stem cells (MSCs), and the capacity to mineralize their extracellular matrix by osteoblasts and differentiated MSCs were tested in vitro.

Methods: A MTT assay was conducted to measure the mitochondrial activity of MSCs, and an Alizarin Red S staining quantification assay to measure the deposition of calcium by osteoblasts and differentiated, bone marrow-derived MSCs.

Results: A significantly higher mitochondrial activity was shown in MSCs co-cultured with extracts of IVD tissue (10%, 50%, and 100%) compared with the control group after 48 hours of incubation, indicating that the IVD tissue extracts stimulated the mitochondrial activity of MSCs. This effect appeared to be inversely proportional to the concentration of IVD tissue extract. No significant differences in mineralization by human osteoblasts or differentiated MSCs were found between the samples incubated with IVD tissue extracts (3% and 33%) and the control samples.

Conclusion: Our findings indicate that remaining IVD tissue has more of a stimulating than inhibiting effect on the activity of MSCs. Even if inflammatory cytokines are produced, these do not result in a net inhibition of cellular activity or osteogenic differentiation of MSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483188PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215536PLOS

Publication Analysis

Top Keywords

ivd tissue
28
mitochondrial activity
16
activity mscs
16
osteoblasts differentiated
12
tissue
9
intervertebral disc
8
disc tissue
8
complete removal
8
ivd
8
remaining ivd
8

Similar Publications

Background: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.

Objective: This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.

View Article and Find Full Text PDF

Development and biomechanical evaluation of a 3D printed analogue of the human lumbar spine.

3D Print Med

January 2025

Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W (163), Montréal, QC, H3A 0C3, Canada.

Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices.

View Article and Find Full Text PDF

Objectives: The incidence rate of intervertebral disc degeneration (IVDD) is increasing year by year, which brings great harm to our health. The change of biomechanical factors is an important reason for IVDD. Therefore, more and more studies use finite element (FE) models to analyze the biomechanics of spine.

View Article and Find Full Text PDF

Deciphering SPP1-related macrophage signaling in the pathogenesis of intervertebral disc degeneration.

Cell Biol Toxicol

January 2025

Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China.

This study delved into the molecular mechanisms underlying mechanical stress-induced intervertebral disc degeneration (msi-IDD) through single-cell and high-throughput transcriptome sequencing in mouse models and patient samples. Results exhibited an upsurge in macrophage presence in msi-IDD intervertebral disc (IVD) tissues, with secreted phosphoprotein 1 (SPP1) identified as a pivotal driver exacerbating degeneration via the protein kinase RNA-like endoplasmic reticulum kinase/ activating transcription factor 4/ interleukin-10 (PERK/ATF4/IL-10) signaling axis. Inhibition of SPP1 demonstrated promising outcomes in mitigating msi-IDD progression in both in vitro and in vivo models.

View Article and Find Full Text PDF

Purpose: Fibrosis of muscle spindles (sensory organs) in back muscles induced by intervertebral disc (IVD) degeneration could limit transmission of muscle stretch to the sensory receptor and explain the proprioceptive deficits common in back pain. Exercise reduces back muscles fibrosis. This study investigated whether targeted muscle activation via neurostimulation reverses or resolves muscle spindle fibrosis in a model of IVD injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!