Right ventricular dysfunction is highly prevalent across cardiopulmonary diseases and independently predicts death in both heart failure (HF) and pulmonary hypertension (PH). Progression towards right ventricular failure (RVF) can occur in spite of optimal medical treatment of HF or PH, highlighting current insufficient understanding of RVF molecular pathophysiology. To identify molecular mechanisms that may distinctly underlie RVF, we investigated the cardiac ventricular transcriptome of advanced HF patients, with and without RVF. Using an integrated systems genomic and functional biology approach, we identified an RVF-specific gene module, for which WIPI1 served as a hub and HSPB6 and MAP4 as drivers, and confirmed the ventricular specificity of Wipi1, Hspb6, and Map4 transcriptional changes in adult murine models of pressure overload induced RV- versus LV- failure. We uncovered a shift towards non-canonical autophagy in the failing RV that correlated with RV-specific Wipi1 upregulation. In vitro siRNA silencing of Wipi1 in neonatal rat ventricular myocytes limited non-canonical autophagy and blunted aldosterone-induced mitochondrial superoxide levels. Our findings suggest that Wipi1 regulates mitochondrial oxidative signaling and non-canonical autophagy in cardiac myocytes. Together with our human transcriptomic analysis and corroborating studies in an RVF mouse model, these data render Wipi1 a potential target for RV-directed HF therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629151PMC
http://dx.doi.org/10.1172/jci.insight.122929DOI Listing

Publication Analysis

Top Keywords

non-canonical autophagy
12
ventricular failure
8
hspb6 map4
8
wipi1
7
ventricular
6
rvf
5
wipi1 conserved
4
conserved mediator
4
mediator ventricular
4
failure
4

Similar Publications

The ASPARAGINE-RICH PROTEIN-LYST-INTERACTING PROTEIN5 complex regulates non-canonical AUTOPHAGY8 degradation in Arabidopsis.

Plant Physiol

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.

The endocytic and autophagic pathways play important roles in abiotic stress responses and maintaining cellular homeostasis in plants. Asparagine Rich Proteins (NRPs) are plant-specific stress-responsive proteins that are involved in many abiotic stress-related signaling pathways. We previously demonstrated that NRP promotes PIN FORMED 2 (PIN2) vacuolar degradation to maintain PIN2 homeostasis under abscisic acid (ABA) treatment in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Non-Canonical, Extralysosomal Activities of Lysosomal Peptidases in Physiological and Pathological Conditions: New Clinical Opportunities for Cancer Therapy.

Cells

January 2025

Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain.

Lysosomes are subcellular compartments characterised by an acidic pH, containing an ample variety of acid hydrolases involved in the recycling of biopolymers. Among these hydrolases, lysosomal proteases have merely been considered as end-destination proteases responsible for the digestion of waste proteins, trafficked to the lysosomal compartment through autophagy and endocytosis. However, recent reports have started to unravel specific roles for these proteases in the regulation of initially unexpected biological processes, both under physiological and pathological conditions.

View Article and Find Full Text PDF

CprA is a short-chain dehydrogenase/reductase (SDR) that contributes to resistance against colistin and antimicrobial peptides. The cprA gene is conserved across Pseudomonas aeruginosa clades and its expression is directly regulated by the two-component system PmrAB. We have shown that cprA expression leads to the production of outer membrane vesicles (OMVs) that block autophagic flux and have a greater capacity to activate the non-canonical inflammasome pathway.

View Article and Find Full Text PDF

Gaudichaudione H Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Disulfidptosis via Regulating NRF2-SLC7A11 Signaling Pathway.

Adv Sci (Weinh)

January 2025

International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.

Gaudichaudione H (GH) is a naturally occurring small molecular compound derived from Garcinia oligantha Merr. (Clusiaceae), but the full pharmacological functions remain unclear. Herein, the potential of GH in disulfidptosis regulation, a novel form of programmed cell death induced by disulfide stress is explored.

View Article and Find Full Text PDF

Scutellarin inhibits pyroptosis via selective autophagy degradation of p30/GSDMD and suppression of ASC oligomerization.

Pharmacol Res

January 2025

MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Most of the pyroptosis inhibitors targeted Gasdermin D (GSDMD) are functioning by restraining GSDMD-N (p30) oligomerization. For the first time, this work discovered a pyroptosis inhibitor taking effect by degrading p30 and GSDMD. As the principal bioactive constituent in Erigeron breviscapus, scutellarin (SCU) assumes a pivotal role in the realm of anti-inflammatory processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!