Rationale: Understanding of the molecular processes that led to the first biomolecules on Earth is one of the key aspects of origins-of-life research. Depsipeptides, or polymers with mixed amide and ester backbones, have been proposed as plausible prebiotic precursors for peptide formation. Chemical characterization of depsipeptides in complex prebiotic-like mixtures should benefit from more efficient ion sources and ultrahigh-resolution mass spectrometry (UHR-MS) for elemental composition elucidation.

Methods: A sliding freestanding (SF) Triboelectric Nanogenerator (TENG) was coupled to glass nanoelectrospray emitters for the analysis of a depsipeptide library created using 11 amino acids and 3 alpha-hydroxy acids subjected to environmentally driven polymerization. The TENG nanoelectrospray ionization (nanoESI) source was coupled to an UHR Orbitrap mass spectrometer operated at 1,000,000 resolution for detecting depsipeptides and oligoesters in such libraries. Tandem mass spectrometry (MS/MS) experiments were performed on an Orbitrap Q-Exactive mass spectrometer.

Results: Our previous proteomics-like approach to depsipeptide library characterization showed the enormous complexity of these dynamic combinatorial systems. Here, direct infusion UHR-MS along with de novo sequencing enabled the identification of 524 sequences corresponding to 320 different depsipeptide compositions. Van Krevelen and mass defect diagrams enabled better visualization of the chemical diversity in these synthetic libraries.

Conclusions: TENG nanoESI coupled to UHR-MS is a powerful method for depsipeptide library characterization in an origins-of-life context.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.8469DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
depsipeptide library
12
triboelectric nanogenerator
8
orbitrap mass
8
library characterization
8
mass
6
compositional characterization
4
characterization complex
4
complex protopeptide
4
protopeptide libraries
4

Similar Publications

An N,N,N-type Cu(Ⅱ) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(Ⅱ) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance.

View Article and Find Full Text PDF

Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 6 ameliorates cardiac hypertrophy by regulating CTSD/HSP90α signaling during pressure overload.

Acta Pharmacol Sin

January 2025

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.

View Article and Find Full Text PDF

Mitochondria are central to myriad biochemical processes, and thus even their moderate impairment could have drastic cellular consequences if not rectified. Here, to explore cellular strategies for surmounting mitochondrial stress, we conducted a series of chemical and genetic perturbations to Saccharomyces cerevisiae and analysed the cellular responses using deep multiomic mass spectrometry profiling. We discovered that mobilization of lipid droplet triacylglycerol stores was necessary for strains to mount a successful recovery response.

View Article and Find Full Text PDF

Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!