Move Over, Genomes: Here Comes Transcriptome Engineering.

CRISPR J

1 Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California.

Published: April 2018

Download full-text PDF

Source
http://dx.doi.org/10.1089/crispr.2018.29010.stfDOI Listing

Publication Analysis

Top Keywords

move genomes
4
genomes transcriptome
4
transcriptome engineering
4
move
1
transcriptome
1
engineering
1

Similar Publications

Genomic sequencing: the case for equity of care in the era of personalized medicine.

Pediatr Res

January 2025

Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Over the past two decades, genomic sequencing (exome and genome) has proven to be critical in providing a faster and more accurate diagnosis as well as tailored treatment plans for a variety of populations. Despite its potential, disparities in access to genomic sequencing persist, predominantly among underrepresented and socioeconomically disadvantaged groups and populations. This inequity stems from factors such as: 1) high costs of sequencing, 2) significant gaps in insurance coverage, 3) limited availability of genetic services in many healthcare institutions and geographic areas, and 4) lack of diversity in genetic research and databases.

View Article and Find Full Text PDF

High-speed atomic force microscopy reveals opposite traffic of processive chitinases impairs α-chitin biodegradation.

Carbohydr Polym

March 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

The antiparallelly organized α-chitin exhibits greater thermodynamic stability and is more recalcitrant to degradation than its parallel allomorph, β-chitin, thereby impeding the efficient utilization of this natural resource. The processive chitinases usually provide the majority of catalytic potential for chitin biodegradation. Using high-speed atomic force microscopy (HS-AFM), we revealed that the opposite traffic of OfChi-h, the only processive chitinase involved in chitin biodegradation in the insect Ostrinia furnacalis, is a key factor that significantly affects α-chitin degradation.

View Article and Find Full Text PDF

Most circadian texts begin by stating that clocks are pervasive throughout the tree of life. Indeed, clock mechanisms have been described from cyanobacteria to humans, representing a notable example of convergent evolution: yet, there are several phyla in animals, protists or within fungi and bacteria, in which homologs of some-or all-known clock components seem to be absent, posing inevitable questions about the evolution of circadian systems. Moreover, as we move away from model organisms, there are several taxa in which core clock elements can be identified at the genomic levels.

View Article and Find Full Text PDF

A change language for ontologies and knowledge graphs.

Database (Oxford)

January 2025

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, United States.

Ontologies and knowledge graphs (KGs) are general-purpose computable representations of some domain, such as human anatomy, and are frequently a crucial part of modern information systems. Most of these structures change over time, incorporating new knowledge or information that was previously missing. Managing these changes is a challenge, both in terms of communicating changes to users and providing mechanisms to make it easier for multiple stakeholders to contribute.

View Article and Find Full Text PDF

Single-molecule microscopy reveals that importin α slides along DNA while transporting cargo molecules.

Biochem Biophys Res Commun

January 2025

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Faculty of Engineering and Graduate School of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan. Electronic address:

Importin α is a crucial player in the nucleocytoplasmic transport of nuclear localization signal (NLS)-containing cargo proteins and is suggested to bind to DNA directly. We hypothesized that importin α, after binding to DNA, may move along DNA via sliding or hopping. We investigated the movement dynamics of importin αs fused to AcGFP along DNA using single-molecule fluorescence microscopy and single-tethered DNA arrays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!