Applications of CRISPR-Cas9 Technology in Translational Research on Solid-Tumor Cancers.

CRISPR J

1 Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China .

Published: February 2018

Since its introduction to genome editing, CRISPR-Cas9 has been used to generate cell and animal models of disease, investigate relations between genomes and phenotypes, and interfere with disease development. Although most of its applications have been in basic research, efforts are underway to move CRISPR-Cas9 from bench to bedside. This review summarizes current and prospective applications of the CRISPR-Cas9 system in biomedical and translational research on solid tumors, as well as the challenges of expanding this technology into clinical use.

Download full-text PDF

Source
http://dx.doi.org/10.1089/crispr.2017.0001DOI Listing

Publication Analysis

Top Keywords

applications crispr-cas9
8
crispr-cas9 technology
4
technology translational
4
translational solid-tumor
4
solid-tumor cancers
4
cancers introduction
4
introduction genome
4
genome editing
4
editing crispr-cas9
4
crispr-cas9 generate
4

Similar Publications

Enhancing virus-mediated genome editing for cultivated tomato through low temperature.

Plant Cell Rep

January 2025

Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.

Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding.

View Article and Find Full Text PDF

Depletion of TP53 in Human Pluripotent Stem Cells Triggers Malignant-Like Behavior.

Adv Biol (Weinh)

January 2025

Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands.

Human pluripotent stem cells (hPSCs) tend to acquire genetic aberrations upon culture in vitro. Common aberrations are mutations in the tumor suppressor TP53, suspected to confer a growth-advantage to the mutant cells. However, their full impact in the development of malignant features and safety of hPSCs for downstream applications is yet to be elucidated.

View Article and Find Full Text PDF

Pharmacogenomics for neurodegenerative disorders - a focused review.

Front Pharmacol

December 2024

Department of Anaesthesia Technology, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia.

Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are characterized by the progressive degeneration of neuronal structure and function, leading to severe cognitive and motor impairments. These conditions present significant challenges to healthcare systems, and traditional treatments often fail to account for genetic variability among patients, resulting in inconsistent therapeutic outcomes. Pharmacogenomics aims to tailor medical treatments based on an individual's genetic profile, thereby improving therapeutic efficacy and reducing adverse effects.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown.

View Article and Find Full Text PDF

Background: Undifferentiated embryonic cell transcription factor 1 (UTF1) is predominantly expressed in pluripotent stem cells and plays a vital role in embryonic development and pluripotency maintenance. Despite its established importance in murine models, the role of UTF1 on human induced pluripotent stem cells (iPSCs) has not been comprehensively studied.

Methods: This study utilized CRISPR/Cas9 gene editing to create UTF1 knockout in human fibroblasts and iPSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!