A series of ferrocenylphosphine-stabilized rhodium nanoparticles has been prepared in one pot from the organometallic [Rh(η3-C3H5)3] precursor. This complex has been decomposed by hydrogen treatment (3 bar) in dichloromethane in the presence of five different ferrocene-based phosphine ligands. Very small rhodium nanoparticles in the size range of 1.1-1.7 nm have been obtained. These nanoparticles have shown activity in a model catalytic reaction, namely the hydrogenation of styrene. These results evidence that the metal surface is not blocked despite the steric bulk of the stabilizing ligands. Moreover, certain selectivity has been observed depending on the ligand employed. To the best of our knowledge, such a type of compound has not yet been used for stabilizing metal nanoparticles and our findings highlight the interest to do so.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt01006h | DOI Listing |
Nanomaterials (Basel)
December 2024
Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 420, C.P. 02128, Mexico City, Mexico.
In this study, ZnO was doped and co-doped with rhodium and tungsten to assess the impact of these transition metals on the sonocatalytic degradation of reactive black 5 azo dye (RB-5). Structural analysis revealed that doping ZnO with 1% Rh and W does not alter its wurtzite hexagonal structure, although minor changes in cell parameters were observed due to differences in electronic density. Interestingly, co-doping resulted in lower degradation efficiency than single doping, with W-ZnO emerging as the most effective catalyst, achieving 100% RB-5 degradation within 60 min, likely due to a higher density of oxygen vacancies and hydroxyl groups.
View Article and Find Full Text PDFNanoscale Horiz
November 2024
Department of Chemical Sciences, University of Padova, Padova, Italy.
The development and understanding of alternative plasmonic materials are crucial steps for leveraging new plasmonic technologies. Although gold and silver nanostructures have been intensively studied, the promising plasmonic, chemical and physical attributes of rhodium remain poorly investigated. Here, we report the synthesis and plasmonic response of spherical Rh nanoparticles (NPs) with sizes in the 20-40 nm range.
View Article and Find Full Text PDFNanoscale
December 2024
Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
The use of supported rhodium nanoparticles (RhNPs) is gaining attention due to the drive for better catalyst performance and sustainability. Silica-based supports are promising for RhNP immobilization because of their thermal and chemical stability. Functionalizing silica allows for the design of catalysts with improved activity for biomass transformations.
View Article and Find Full Text PDFJ Mater Chem B
November 2024
Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!