Our objective in this study was to compare the growth of zinnia, Italian ryegrass, and alfalfa, and their remediation effects in oil-contaminated soils. The soils were prepared by mixing 2, 4, or 8% diesel oil by weight with soil. The plant height and dry weights of shoots and roots were highest for zinnia in the 2 and 4% oil treatments, and highest for Italian ryegrass in the 8% oil treatment. The reduction ratios in soil total petroleum hydrocarbons concentration (TPH) for 3 plants were lower in the 4 and 8% oil treatments than those in the 2% treatment. The reduction ratios for Italian ryegrass and zinnia contaminated with 2, 4, and 8% diesel oil treatments were significantly higher than those for alfalfa and the non-cultivation treatment at 45 days after sowing, and there were no significant differences in reduction ratios between Italian ryegrass and zinnia. The reduction ratio of soil TPH concentration brought about by zinnia was also comparable to that of Italian ryegrass. Therefore, we conclude that zinnia shows growth and remediation effects that are equivalent to those of Italian ryegrass, in soils contaminated with less than 8% oil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2019.1594682 | DOI Listing |
Theor Appl Genet
December 2024
Division of Feed and Livestock Research, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan.
We have identified a unique genetic locus for seed shattering in Italian ryegrass that has an exceedingly large effect and shows partial dominance for reduced seed shattering. Genetic improvement of seed retention in forage grasses can contribute to improving their commercial seed production. The objective of this study was to identify the genetic loci responsible for seed shattering in Italian ryegrass (Lolium multiflorum Lam.
View Article and Find Full Text PDFAnimal
November 2024
Poznań University of Life Sciences, Department of Animal Nutrition, Wołyńska 33, 60-637 Poznań, Poland. Electronic address:
Greenhouse gas (GHG) emissions from livestock ruminants, particularly methane (CH), nitrous oxide, and indirectly ammonia (NH) significantly contribute to climate change and global warming. Conventional monoculture swards for cattle feeding, such as perennial ryegrass or Italian ryegrass, usually require substantial fertiliser inputs. Such management elevates soil mineral nitrogen levels, resulting in GHG emissions and potential water contamination.
View Article and Find Full Text PDFJ Anim Sci Technol
November 2024
Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
This study investigated the effects of addition of Italian ryegrass with multi-enzyme on growth performance, fecal odor, and microbiome. The experiment had a two-factor factorial design, using three levels of Italian ryegrass (0%, 2.5%, and 5%) and two levels of multi-enzymes (no enzyme and commercially recommended level) to formulate experimental diets.
View Article and Find Full Text PDFPlant Dis
November 2024
Lanzhou University, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Center for Grassland Microbiome; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou, Gansu, China;
Pest Manag Sci
October 2024
Forage Seed and Cereal Research Unit, United States Department of Agriculture, Corvallis, OR, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!