Soluble Cello-Oligosaccharides Produced by Carbon-Catalyzed Hydrolysis of Cellulose.

ChemSusChem

Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.

Published: June 2019

Cello-oligosaccharides are biologically important molecules that can elicit a defensive immune response in plants and improve the health of animals. Cellulose, a polymer of glucose linked by β-1,4-glycosidic bonds, is an ideal feedstock for synthesis of cello-oligosaccharides. However, cello-oligosaccharides rapidly degrade under the conditions used for cellulose hydrolysis. Here, cellulose was hydrolyzed over a carbon catalyst in a semi-flow reactor to achieve a high yield of cello-oligosaccharides (72 %). The excellent activity of the oxidized carbon catalyst, the adsorption of cellulose on the catalyst, and the high space velocity of products in the reactor were essential. Moreover, a method for quantification of individual cello-oligosaccharides was developed, which suggested a reduction in the rate of hydrolysis with a reduction in chain length.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201900800DOI Listing

Publication Analysis

Top Keywords

hydrolysis cellulose
8
carbon catalyst
8
cellulose
5
cello-oligosaccharides
5
soluble cello-oligosaccharides
4
cello-oligosaccharides produced
4
produced carbon-catalyzed
4
carbon-catalyzed hydrolysis
4
cellulose cello-oligosaccharides
4
cello-oligosaccharides biologically
4

Similar Publications

Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder.

Molecules

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.

Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) prepared by sulfuric acid hydrolysis were added to phthalocyanine green colour pastes with a surfactant to improve stability. The particle size, zeta potential, absorbance, and microstructure of the colour pastes were analyzed and characterized. The mechanism of CNCs to enhance the stability of hydrophobic phthalocyanine green in water was investigated.

View Article and Find Full Text PDF

This study presents the development of biocompatible and biodegradable nanocomposites utilizing renewable cellulose nanocrystals (CNCs) in polycaprolactone (PCL)-based polyurethane acrylates (PUA) through in situ polymerization. First, CNCs were derived from cotton linter via acid hydrolysis; then functionalized with 3-methacryloxypropyltrimethoxysilane to produce silane-modified CNCs (S-CNCs). CNCs offered uniform dispersion in PUA up to 2 wt% loading, resulting in significant property enhancements, including ~60 % increase in tensile strength and ~25 % increase in Young's modulus.

View Article and Find Full Text PDF

Rice husk biowaste derived microcrystalline cellulose reinforced sustainable green composites: A comprehensive characterization for lightweight applications.

Int J Biol Macromol

January 2025

Natural Composites Research Group Lab, Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.

This study addresses the issue of waste generation within the food industry, focusing on the conversion of rice husk waste into value-added products. The investigation involves a comprehensive characterization of microcrystalline cellulose extracted from the rice husk and reinforcing them in bio-epoxy resin to determine its feasibility in producing ecofriendly products. The dried rice husk waste was made to undergo a series of treatments, including alkali, acid hydrolysis, and bleaching for extracting high purity microcrystalline cellulose.

View Article and Find Full Text PDF

The creation of polymer composites with better performance is a crucial thing. The cellulosic filler material gain popularity in polymer composites. In this study, aquatic plant Pistia stratiote leaves were used as a raw material for cellulose extraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!