Osteoarthritis (OA) is a degenerative disease of the cartilage prevalent in the middle-aged and elderly demographic. Direct transplantation of bone marrow mesenchymal stem cells (BMSCs) or stem cell-derived chondrocytes into the damaged cartilage is a promising therapeutic strategy for OA, but is limited by the poor survival and in situ stability of the chondrocytes. Autophagy is a unique catabolic pathway conserved across eukaryotes that maintains cellular homeostasis, recycles damaged proteins and organelles, and promotes survival. The aim of this study was to determine the role of the proautophagic γ-aminobutyric acid receptor-associated protein (GABARAP) on the therapeutic effects of BMSCs-derived chondrocytes in a rat model of OA, and elucidate the underlying mechanisms. Anterior cruciate ligament transection (ACLT) was performed in Sprague-Dawley rats to simulate OA, and the animals were injected weekly with recombinant human His6-GABARAP protein, BMSCs-derived differentiated chondrocytes (DCs) or their combination directly into the knee cartilage. The regenerative effects of GABARAP and/or DCs were determined in term of International Cartilage Repair Society scores and cartilage thickness. The combination treatment of DCs and GABARAP significantly increased the levels of the ECM proteins Col II and SOX9, indicating formation of hyaline-like cartilage, and decreased chondrocyte apoptosis and inflammation. DCs + GABARAP treatment also upregulated the mediators of the autophagy pathway and suppressed the PI3K/AKT/mTOR pathway, indicating a mechanistic basis of its therapeutic action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.28705 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!