Organophosphorus pesticides (OPs) are widely used in agricultural fields, but exhibit high toxicity to human beings. A sensitive fluorescence assay for organophosphorus pesticides was developed using the inhibition of acetylcholinesterase (AChE) activity and the copper-catalyzed click chemical reaction. In the click reaction, two hybridized DNA probes can be ligated with copper ions, inducing a fluorescence quenching during the strand displacement reaction. AChE can hydrolyze acetylthiocholine (ATCh) to form thiocholine (TCh) which contains a thiol group. TCh will react with copper ions, blocking the click reaction and a high fluorescence signal is observed. But in the presence of OPs, the activity of AChE is inhibited, releasing a high concentration of copper ions that catalyze the click chemical reaction and resulting in decreased fluorescence signals. Taking advantage of the copper-mediated signal amplification effect, the sensitivity was improved. This assay has also been applied to detect OPs in river water samples with satisfactory results, which demonstrates that the method has great potential for practical applications in environmental protection and food safety fields.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9an00260jDOI Listing

Publication Analysis

Top Keywords

organophosphorus pesticides
12
copper ions
12
sensitive fluorescence
8
fluorescence assay
8
assay organophosphorus
8
copper-catalyzed click
8
click chemical
8
chemical reaction
8
click reaction
8
click
5

Similar Publications

Global concern regarding transformation products (TPs) derived from contaminants, including pesticides, in the environment and during water treatment has been growing markedly. In the present study, we investigated the anti-acetylcholinesterase (AChE) activity of an aqueous solution of the organophosphorus insecticide disulfoton, a toxicological endpoint for determining the acceptable daily intake of disulfoton, both in the presence and the absence of metabolism during chlorination. Disulfoton rapidly reacted with free chlorine and completely disappeared within 0.

View Article and Find Full Text PDF

Photo-enhanced UiO-66/Au Nanoparticles with High Phosphatase-Like Activity for Rapid Degradation and Detection of Paraoxon.

Small

January 2025

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.

The severe environmental and human health hazards posed by organophosphorus compounds underscore the pressing need for advancements in their degradation and detection. However, practical implementation is impeded by prolonged degradation durations and limited efficiency. Herein, an effective interfacial modification approach is proposed involving the integration of photoactive Au nanoparticles (NPs) onto metal-organic frameworks, resulting in the synthesis of UiO-66/Au NPs exhibiting enhanced hydrolysis activity under light excitation.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.

View Article and Find Full Text PDF

A review on oxidative stress in organophosphate-induced neurotoxicity.

Int J Biochem Cell Biol

January 2025

Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait. Electronic address:

Acetylcholinesterase inhibition, the principal mechanism of acute organophosphorus compound toxicity, cannot explain neuropsychiatric symptoms occurring after exposure to low organophosphate concentrations causing no cholinergic symptoms. Organophosphate-triggered oxidative stress has increasingly come into focus, occurring when the action of reactive oxygen species, generated from free radicals, is not compensated by antioxidant free radical scavengers. Being nucleophilic, organophosphates can easily accept an electron, thereby generating free radicals.

View Article and Find Full Text PDF

Defect-rich Co/N-doped hierarchically porous carbons for rapid and highly efficient adsorption of organophosphorus pesticides from environmental water.

J Chromatogr A

January 2025

School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, PR China. Electronic address:

Organophosphorus pesticides (OPPs) severely pollute various environmental water due to their excessive use, and it is extremely urgent to develop novel adsorbents with high adsorption capacities, rapid removal rate and easily recovery for the removal of OPPs. In this study, defect-rich Co/N-doped hierarchically porous carbons (Co/N-DHPCs) were constructed by pyrolyzing acid-etched ZIF-67 precursor. The developed Co/N-DHPCs possessed rich defects, well-developed hierarchical porous structure, high specific surface area and excellent magnetic property, and exhibited large adsorption capacities of 103.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!