Understanding the structural transition of ionic liquids (ILs) confined in a nanospace is imperative for the application of ILs in energy storage, gas separation, and other chemical engineering techniques. In this work, the quantitative relations between the properties and height of the nanochannel (H) for the ([Emim][TFN]) IL are explored through molecular dynamics simulations. Interestingly, the entropy of the confined IL exhibits a nonmonotonic behavior as H increases: initially increasing for H < 1.0 nm and then decreasing for 1.0 < H < 1.1 nm, followed by increasing again for H > 1.1 nm; it finally approaches that of liquid bulk ILs. The vibrational spectrum of the confined IL is analyzed to investigate the nature of nonmonotonic entropy, showing that the liquidity and partial solidity will be respectively attenuated and enhanced as H decreases from 5.0 to 0.75 nm. Moreover, the hydrogen bond (HB) network and external force are also calculated, showing similar nonmonotonic behaviors when compared with the thermodynamic properties. The entropy gain of the confined IL originates from the reduced HB interactions, weaker external force, and partial solid nature, where more phase space sampling for ILs inside a bilayer graphene nanochannel (BLGC) can be achieved. All the above relations demonstrate that there exists a critical height of the nanochannel (H = 1.0 nm) at which the confined IL possesses weaker HB interaction, higher entropy, and better stability. The critical height of the nanochannel is also identified in the analysis of the local structures of cation head groups and anions, indicating that the confined IL could have a faster in-plane diffusive ability. These factors can serve as key indicators in quantitatively characterizing the mechanism for the structural transition of ILs inside a nanochannel and facilitate the rational design of nanopores and nanochannels to regulate the properties and structures of ILs in practical application scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp00732f | DOI Listing |
Soft Matter
January 2025
Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China.
Artificial ionic nanochannels with light perception capabilities hold promise for creating ionic devices. Nevertheless, most research primarily focuses on regulating single nanochannels, leaving the cumulative effect of numerous nanochannels and their integration underexplored. We herein develop a biomimetic photoreceptor based on photoresponsive highly aligned nanochannels (pHANCs), which exhibit uniform channel heights, phototunable surface properties, and excellent compatibility with microfabrication techniques, enabling the scalable fabrication and integration into functional ionic devices.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Hybrid nanoplasmonic structures composed of subwavelength apertures in metallic films and nanoparticles have recently been demonstrated as ultrasensitive plasmonic sensors. This work investigates the electrokinetically driven propagation of the assembly mechanism of the metallic nanoparticles through nanoapertures. The Debye-Hückel approximation for a symmetric electrolyte solution with overlapping electrical double layers (EDLs) is used to obtain an analytical solution to the problem.
View Article and Find Full Text PDFJ Phys Chem B
November 2024
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong.
J Mol Model
September 2024
College of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu Province, China.
Context: In a very small surface separation, the fluid flow is actually multiscale consisting of both the molecular scale non-continuum adsorbed layer flow and the intermediate macroscopic continuum fluid flow. Classical simulation of this flow often takes over large computational source and is not affordable owing to using molecular dynamics simulation (MDS) to model the adsorbed layer flow, if the flow field size is on the engineering size scale such as of 0.01-10 mm or even bigger like occurring in micro or macro hydrodynamic bearings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!