Antibodies are commonly used to detect or isolate proteins from biological samples. Much attention has been paid to the potential for poorly-characterized antibodies to lead to misleading results, but artefacts may also occur. Here, we recount two examples of antibody-independent artefacts that have confounded the interpretation of results in our search for molecular entities associated with memory loss in Alzheimer's disease (AD). First, when using biotin-avidin systems for antibody detection, endogenous biotinylated proteins created spurious bands in Western blots of brain lysates from AD patients and transgenic mouse models of AD. These artefactual bands occurred in a transgene- and strain-dependent manner. A second, unexpected artefact occurred when Protein A-conjugated Sepharose beads were used to deplete lysates of endogenous immunoglobulins prior to immunopurification of target proteins. In these assays, Protein A shed from the beads, then bound to (and was eluted from) an immunoaffinity matrix designed to capture AD-related proteins. The Protein A then bound detection antibodies when the immunoaffinity eluates were analyzed by Western blot. Both of these artefacts-the endogenous biotinylated proteins and the Protein A artefact-can be monitored by including an "irrelevant" antibody as an experimental control (e.g., running a parallel protocol in which the antibody directed against the target of interest is replaced by a non-specific antibody).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474067PMC
http://dx.doi.org/10.1186/s12575-019-0095-zDOI Listing

Publication Analysis

Top Keywords

endogenous biotinylated
12
biotinylated proteins
12
antibody-independent artefacts
8
western blot
8
proteins protein
8
proteins
7
protein
5
cautionary tale
4
endogenous
4
tale endogenous
4

Similar Publications

Biotinylation by antibody recognition (BAR) is an antibody-based approach for mapping proximal protein interactions in cells. Here, we present a protocol to biotinylate and identify proximal proteins using BAR. We describe steps for defining proximity labeling reaction conditions, assessing enrichment using western blot, and sample preparation for mass spectroscopy analysis.

View Article and Find Full Text PDF

Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.

View Article and Find Full Text PDF

Effect of Linker Length on the Function of Biotinylated OSW-1 Probes.

Chembiochem

January 2025

Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, JAPAN.

The biotinylated probes based on anticancer saponin OSW-1 with varied linker lengths were synthesized and their cell growth inhibitory activity and affinity pulldown efficiency were evaluated. All probes demonstrated comparable cytotoxicity to the parent natural product, highlighting that the linker moiety had a minimal impact on cell uptake or target engagement. In contrast, when evaluated against the known target proteins, OSBP and ORP4, the biotinylated probe 3 with PEG5 linker enabled most effective enrichment of target proteins in the affinity pulldown assay, suggesting that the cytotoxicity and pulldown efficiency did not correlate among the probes studied.

View Article and Find Full Text PDF

An attractive strategy for combating antibacterial resistance involves the development of new antibiotics whose mechanisms differ from those of existing ones in the clinic. Elfamycin antibiotics, whose prototypes include kirromycin and aurodox, are illustrative examples based on their ability to target EF-Tu, an essential component for protein translation in bacteria. Our efforts to revisit this antibiotic class were enabled by two developments.

View Article and Find Full Text PDF

To enable transmission of information in the brain, synaptic vesicles fuse to presynaptic membranes, liberating their content and exposing transiently a myriad of vesicular transmembrane proteins. However, versatile methods for quantifying the synaptic translocation of endogenous proteins during neuronal activity remain unavailable, as the fast dynamics of synaptic vesicle cycling difficult specific isolation of trafficking proteins during such a transient surface exposure. Here, we developed a novel approach using synaptic cleft proximity labeling to capture and quantify activity-driven trafficking of endogenous synaptic proteins at the synapse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!