Obligate root holoparasite Phelipanche aegyptiaca is an agricultural pest, which infests its hosts and feeds on the sap, subsequently damaging crop yield and quality. Its notoriously viable seed bank may serve as an ideal pest control target. The phytohormone abscisic acid (ABA) was shown to regulate P. aegyptiaca seed dormancy following strigolactones germination stimulus. Transcription analysis of signaling components revealed five ABA receptors and two co-receptors (PP2C). Transcription of lower ABA-affinity subfamily III receptors was absent in all tested stages of P. aegyptiaca development and parasitism stages. P. aegyptiaca ABA receptors interacted with the PP2Cs, and inhibited their activity in an ABA-dependent manner. Moreover, sequence analysis revealed multiple alleles in two P. aegyptiaca ABA receptors, with many non-synonymous mutations. Functional analysis of selected receptor alleles identified a variant with substantially decreased inhibitory effect of PP2Cs activity in-vitro. These results provide evidence that P. aegyptiaca is capable of biochemically perceiving ABA. In light of the possible involvement of ABA in parasitic activities, the discovery of active ABA receptors and PP2Cs could provide a new biochemical target for the agricultural management of P. aegyptiaca. Furthermore, the potential genetic loss of subfamily III receptors in this species, could position P. aegyptiaca as a valuable model in the ABA perception research field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482195 | PMC |
http://dx.doi.org/10.1038/s41598-019-42976-3 | DOI Listing |
Plant Cell Environ
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China.
Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported.
View Article and Find Full Text PDFDev Cell
January 2025
Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2025
Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan. Electronic address:
Plant responses to the water environment are mediated by ethylene (submergence response) and abscisic acid (ABA, drought response). Ethylene is perceived by a family of histidine kinase receptors (ETR-HKs), which regulate the activity of the downstream B3 Raf-like (RAF) kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) in an ethylene-dependent manner. We previously demonstrated in the moss Physcomitrium patens that SNF1-related protein kinase 2 (SnRK2), an essential kinase in osmostress responses in land plants, is activated by the B3-RAF kinase ARK, which is also regulated by ETR-HKs in an ABA- and osmostress-dependent manner.
View Article and Find Full Text PDFNutrients
December 2024
Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy.
Abscisic acid (ABA) is a hormone with a long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely descendants, which existed long before the separation of the plant and animal kingdoms, with a conserved role as signals regulating cell responses to environmental challenges. In mammals, along with the anti-inflammatory and neuroprotective function of ABA, nanomolar ABA regulates the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue via an insulin-independent mechanism and increasing metabolic energy production and also dissipation in brown and white adipocytes. Chronic ABA intake of micrograms per Kg body weight improves blood glucose, lipids, and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and metabolic syndrome.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.
Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!