Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The connections between neurons determine the computations performed by both artificial and biological neural networks. Recently, we have proposed SYNSeq, a method for converting the connectivity of a biological network into a form that can exploit the tremendous efficiencies of high-throughput DNA sequencing. In SYNSeq, each neuron is tagged with a random sequence of DNA-a "barcode"-and synapses are represented as barcode pairs. SYNSeq addresses the analysis problem, reducing a network into a suspension of barcode pairs. Here, we formulate a complementary synthesis problem: How can the suspension of barcode pairs be used to "clone" or copy the network back into an uninitialized tabula rasa network? Although this synthesis problem might be expected to be computationally intractable, we find that, surprisingly, this problem can be solved efficiently, using only neuron-local information. We present the "one-barcode-one-cell" (OBOC) algorithm, which forces all barcodes of a given sequence to coalesce into the same neuron, and show that it converges in a number of steps that is a power law of the network size. Rapid and reliable network cloning with single-synapse precision is thus theoretically possible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511037 | PMC |
http://dx.doi.org/10.1073/pnas.1706012116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!