A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Network cloning using DNA barcodes. | LitMetric

Network cloning using DNA barcodes.

Proc Natl Acad Sci U S A

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724

Published: May 2019

The connections between neurons determine the computations performed by both artificial and biological neural networks. Recently, we have proposed SYNSeq, a method for converting the connectivity of a biological network into a form that can exploit the tremendous efficiencies of high-throughput DNA sequencing. In SYNSeq, each neuron is tagged with a random sequence of DNA-a "barcode"-and synapses are represented as barcode pairs. SYNSeq addresses the analysis problem, reducing a network into a suspension of barcode pairs. Here, we formulate a complementary synthesis problem: How can the suspension of barcode pairs be used to "clone" or copy the network back into an uninitialized tabula rasa network? Although this synthesis problem might be expected to be computationally intractable, we find that, surprisingly, this problem can be solved efficiently, using only neuron-local information. We present the "one-barcode-one-cell" (OBOC) algorithm, which forces all barcodes of a given sequence to coalesce into the same neuron, and show that it converges in a number of steps that is a power law of the network size. Rapid and reliable network cloning with single-synapse precision is thus theoretically possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511037PMC
http://dx.doi.org/10.1073/pnas.1706012116DOI Listing

Publication Analysis

Top Keywords

barcode pairs
12
network cloning
8
suspension barcode
8
synthesis problem
8
network
6
cloning dna
4
dna barcodes
4
barcodes connections
4
connections neurons
4
neurons determine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!