Antagonism of host immune defenses against hepatitis B virus (HBV) infection by the viral proteins is speculated to cause HBV persistence and the development of chronic hepatitis. The circulating hepatitis B e antigen (HBeAg, p17) is known to manipulate host immune responses to assist in the establishment of persistent viral infection, and HBeAg-positive (HBeAg) patients respond less effectively to IFN-α therapy than do HBeAg-negative (HBeAg) patients in clinical practice. However, the function(s) of the intracellular form of HBeAg, previously reported as the precore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we report that the cytosolic p22 protein, but not the secreted HBeAg, significantly reduces interferon-stimulated response element (ISRE) activity and the expression of interferon-stimulated genes (ISGs) upon alpha interferon (IFN-α) stimulation in cell cultures. In line with this, HBeAg patients exhibit weaker induction of ISGs in their livers than do HBeAg patients upon IFN-α therapy. Mechanistically, while p22 does not alter the total STAT1 or pSTAT1 levels in cells treated with IFN-α, it blocks the nuclear translocation of pSTAT1 by interacting with the nuclear transport factor karyopherin α1 through its C-terminal arginine-rich domain. In summary, our study suggests that HBV precore protein, specifically the p22 form, impedes JAK-STAT signaling to help the virus evade the host innate immune response and, thus, causes resistance to IFN therapy. Chronic hepatitis B virus (HBV) infection continues to be a major global health concern, and patients who fail to mount an efficient immune response to clear the virus will develop a life-long chronic infection that can progress to chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma. There is no definite cure for chronic hepatitis B, and alpha interferon (IFN-α) is the only available immunomodulatory drug, to which only a minority of chronic patients are responsive, with hepatitis B e antigen (HBeAg)-negative patients responding better than HBeAg-positive patients. We herein report that the intracellular HBeAg, also known as precore or p22, inhibits the antiviral signaling of IFN-α, which sheds light on the enigmatic function of precore protein in shaping HBV chronicity and provides a perspective toward areas that need to be further studied to make the current therapy better until a cure is achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580977PMC
http://dx.doi.org/10.1128/JVI.00196-19DOI Listing

Publication Analysis

Top Keywords

precore protein
16
hbeag patients
16
hepatitis virus
12
alpha interferon
12
chronic hepatitis
12
hepatitis
8
protein p22
8
p22 inhibits
8
nuclear translocation
8
host immune
8

Similar Publications

Objectives: Hepatitis B virus (HBV) has a partially double-stranded circular deoxyribonucleic acid (DNA) that replicates through reverse transcription, producing an intermediate ribonucleic acid (RNA). This replication process has a high chance of error, leading to several mutations in the genome. According to several studies conducted worldwide, the classical basal core promoter (BCP) double mutation (A to T at nucleotide 1762 and G to A at nucleotide 1764) in the BCP region and the mutation in the precore (PC) region (G to A at nucleotide 1896) of HBV DNA have a strong correlation with advanced liver disease.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) is the most implicated cause of severe liver disease and hepatocellular carcinoma worldwide. Studies have shown that the basal core protein (BCP) and precore protein (PC) of HBV play a significant role in HBV-related carcinogenesis. There is a paucity of data on the type and effect of BCP and PC mutations in Nigeria.

View Article and Find Full Text PDF

Background: The hepatitis B e antigen (HBeAg)-negative infection Phase 3 is characterized by no or minimal signs of hepatic inflammation and the absence of hepatic fibrosis. However, underlying molecular mechanisms leading to this benign phenotype are poorly understood.

Methods: Genotype A, B and D HBeAg-negative patient isolates with precore mutation G1896A from Phase 3 were analysed in comparison with respective HBeAg-positive rescue mutant and HBeAg-positive wild-type reference genomes regarding differences in viral replication, morphogenesis, infectivity and impact on NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE)-dependent gene expression and cellular kinome.

View Article and Find Full Text PDF

Comparison of the Proteome of Huh7 Cells Transfected with Hepatitis B Virus Subgenotype A1, with or without G1862T.

Curr Issues Mol Biol

July 2024

Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Johannesburg 2193, South Africa.

HBeAg is a non-structural, secreted protein of hepatitis B virus (HBV). Its p25 precursor is post-translationally modified in the endoplasmic reticulum. The G1862T precore mutation leads to the accumulation of P25 in the endoplasmic reticulum and activation of unfolded protein response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!