The present work deals with deconvolution of interfered peaks of protonated and sodiated phosphatidylcholines to solve the problem of relative quantitation of these compounds. The method was developed based on the fact that adducts of phosphatidylcholines with proton and sodium ion give unique characteristic peaks in tandem mass spectrometry. Ultra-high-resolution Fourier-transform ion cyclotron resonance mass spectrometry was used to resolve interfered peaks and thus validate the results of tandem mass spectrometry-based deconvolution. Applicability of the method was tested with synthesized phosphatidylcholines and applied for tissue-spray analysis of the clinical samples and demonstrated good correlation (0.996) between MS/MS and Fourier-transform ion cyclotron resonance mass spectrometry results.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1469066718799992DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
fourier-transform ion
12
ion cyclotron
12
cyclotron resonance
12
resonance mass
12
relative quantitation
8
protonated sodiated
8
interfered peaks
8
tandem mass
8
mass
5

Similar Publications

One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD.

View Article and Find Full Text PDF

Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet.

View Article and Find Full Text PDF

In this study, we analyzed purine derivatives using multimatrix variation matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) with α-cyano-4-hydroxycinnamic acid (CHCA), 1,5-diaminonaphtalene (DAN), 5-formylsalicylic acid (FSA), and 5-nitrosalicylic acid (NSA) as matrices. Further, we focused on the abstraction/attachment of hydrogen from/to analytes and detected [M - H], [M + 2H] and/or [M + 3H] in MALDI MS spectra of compounds containing nitrogen and/or carbonyl oxygen. Although [M - H] generation of purine compounds in MALDI MS with conventional matrices was challenging, NSA-MALDI MS effectively yielded the [M - H]species of purine derivatives compared with CHCA, FSA, and DAN, and the [M - H]/[M + H] ratios reflected their structures, such as the substituting groups and positions.

View Article and Find Full Text PDF

The position and configuration of the C═C bond have a significant impact on the spatial conformation of unsaturated lipids, which subsequently affects their biological functions. Double bond isomerization of lipids is an important mechanism of bacterial stress response, but its in-depth mechanistic study still lacks effective analytical tools. Here, we developed a visible-light-activated dual-pathway reaction system that enables simultaneous [2 + 2] cycloaddition and catalytic - isomerization of the C═C bond of unsaturated lipids via directly excited anthraquinone radicals.

View Article and Find Full Text PDF

Inflammation, a central process in numerous diseases, plays a crucial role in hepatic disorders, arthritis, cardiac conditions, and neurodegenerative ailments. Given the lack of effective anti-inflammatory drugs, it is imperative to assess inflammation severity and explore novel therapeutics. Selenocysteine (Sec), a key mediator of selenium's biological function, is closely involved in anti-inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!