Polysaccharides are a main active substance in ; however, microwave-assisted extraction used to prepare polysaccharides (MPPG) has rarely been reported, and knowledge of the bactericidal activity of polysaccharides remains low. Thus, this study was designed to investigate the extraction of polysaccharides by using two methods-hot water extraction and microwave-assisted extraction-and compare their chemical composition and structure. In addition, their antibacterial and antioxidant activities were also determined. The data implied that polysaccharides extracted by microwave-assisted extraction possessed a higher extraction yield than hot water extraction (WPPG) under optimized conditions, and the actual yields were 41.6% ± 0.09% and 28.5% ± 1.62%, respectively. Moreover, the preliminary characterization of polysaccharides was identified after purification. The WPPG with the molecular weight (Mw) of 2.07 × 10 Da was composed of Man, Rib, Rha, GalA, Glu, Gal, and Arab, and the typical characteristics of polysaccharides were determined by IR spectra. Compared with WPPG, MPPG had a higher Mw, uronic acid content, and Glu content. More importantly, the antioxidant activity of MPPG was higher than WPPG, which was probably ascribed to its highly Mw and abundant uronic acid content. Besides, both of them exhibited high bactericidal activity. These results demonstrate that microwave-assisted extraction is an effective method for obtaining polysaccharides, and MPPG could be applied as an antioxidant and antibacterial agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514599 | PMC |
http://dx.doi.org/10.3390/molecules24081605 | DOI Listing |
ACS Omega
December 2024
Ege University Solar Energy Institute, 35040 Bornova, Izmir, Turkey.
Utilization of renewable resources has become imperative, and considerable efforts have been devoted to tackling diverse global sustainability challenges, which contribute to the circular economy. The focus of this work was to optimize the extraction of polyphenolic compounds in bark using microwave-assisted (MAE) and ultrasonically assisted (UAE) extractions and evaluate the biological efficacies of the extracts. Additionally, the residue of the extracted pine bark was subjected to steam gasification to produce hydrogen-rich syngas and activated carbon.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Food Engineering and Bioprocess Technology Program, Department of Food, Agriculture, and Bioresources, School of Environment, Resources, and Development, Asian Institute of Technology, Khlong Luang, Pathumthani 12120, Thailand. Electronic address:
This research investigates the impact of microwave power, processing time, and solid-to-solvent ratio on protein recovery from foxtail millet (Setaria italica), using an artificial neural network (ANN) and genetic algorithm (GA). The extracted protein and subsequent hydrolysates were also evaluated for their techno-functional, structural, and digestibility properties. The ANN model, trained with the Levenberg-Marquardt algorithm and optimized by a GA, identified optimal extraction conditions (960 W, 66.
View Article and Find Full Text PDFPhytomedicine
December 2024
College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China. Electronic address:
Background: Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects.
Purpose: This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved.
Mar Drugs
November 2024
Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy.
Marine microalgae are emerging as promising sources of polyphenols, renowned for their health-promoting benefits. Recovering polyphenols from microalgae requires suitable treatment and extraction techniques to ensure their release from the biomass and analytical methodologies to assess their efficiency. This review provides a comprehensive comparison of traditional and cutting-edge extraction and analytical procedures applied for polyphenolic characterization in marine microalgae over the past 26 years, with a unique perspective on optimizing their recovery and identification.
View Article and Find Full Text PDFMar Drugs
November 2024
Nuclear Research Centre of Birine, Ain Oussera 17200, Algeria.
This study represents the first investigation into the ultrasonic and microwave extraction of bioactive metabolites from (red seaweed) and () (brown seaweed), with a focus on their biological activities. The research compares ultrasound-assisted extraction (UAE) with microwave-assisted extraction (MAE) utilizing a hydromethanolic solvent to evaluate their effects on these seaweeds' bioactive compounds and biological activities. The assessment included a series of antioxidant essays: DPPH, ABTS, phenanthroline, and total antioxidant capacity, followed by enzyme inhibition activities: alpha-amylase and urease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!