Yield and gas exchange of greenhouse tomato at different nitrogen levels under aerated irrigation.

Sci Total Environ

Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University, Yangling, Shannxi, 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Published: June 2019

Significant global warming increases over the last century have resulted in recent research focused on practices to reduce greenhouse gas (GHG) emissions. Agricultural management practices, such as nitrogen (N) fertilization and aerated irrigation (AI), have significantly increased crop yields by improving soil water and fertilizer availability, and have been widely adopted in recent years. However, the interactive impact of different growing seasons and management practices in the greenhouse on GHG emissions is unclear. This greenhouse study was conducted during Spring and Autumn cultivation periods in Yangling, China with five N application rates (0, 50, 150, 200,250 kg ha) and two irrigation methods (AI and conventional irrigation [CK]). The results indicated that AI and N application both increased tomato yield, but also increased soil CO and NO emissions. The temperature was 4 °C higher during Spring cultivation than during Autumn cultivation, which significantly (P < 0.05) increased soil emissions of CO, NO, and net GHG by 10.6%, 43.8%, and 12.3%, respectively. However, the yield in Spring cultivation only increased by 5.1% (P > 0.05). Thus, among the selectable cultivation seasons, the cooler season (Autumn) along with AI and 200 kg N ha, was recommended to farmers to avoid adverse effects of a warming environment. AI and 150 kg N ha in Spring cultivation could be recommended as an alternative measure to local farmers. Our results suggest that in a future warmer climate, reducing nitrogen fertilizer rate in conjunction with the use of AI will remain important practices for maintaining crop yield while reducing soil net GHG emissions. There is an urgent need to transform current management practices to offset the negative impacts of climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.03.098DOI Listing

Publication Analysis

Top Keywords

ghg emissions
12
management practices
12
aerated irrigation
8
autumn cultivation
8
spring cultivation
8
practices
5
cultivation
5
yield gas
4
gas exchange
4
greenhouse
4

Similar Publications

Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.

Water Sci Technol

January 2025

Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.

This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes.

View Article and Find Full Text PDF

An ML-Enhanced Laser-Based Methane Slip Sensor Using Wavelength Modulation Spectroscopy.

ACS Sens

January 2025

Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.

Natural gas (NG) is a promising alternative to diesel for sustainable transport, potentially reducing GHG and air quality emissions significantly. However, the GHG benefits hinge on managing methane slip, the unburned methane in the exhaust of NG engines, which carries a significant global warming potential. The CH slip from NG engines is highly dependent on engine type and operation, and effective greenhouse gas emission mitigation requires that the actual operation of real-world engines is monitored.

View Article and Find Full Text PDF

To mitigate global warming, replacing concrete and steel with timber as the primary construction material for construction projects, such as check dams, is being promoted in Japan and other countries. Timber check dams have more limited installation sites than concrete or steel dams because of installation conditions such as locations less susceptible to debris flows and locations where there is constant running water. However, even when the installation conditions are met, engineers and contractors are reluctant to select timber as a construction material because of its high construction cost.

View Article and Find Full Text PDF

Farming practices such as soil tillage, organic/mineral fertilization, irrigation, crop selection and residues management influence multiple ecosystem services provided by agricultural systems. These practices exhibit complex, non-linear interrelationships that affect crop productivity, water quality, and non-carbon dioxide greenhouse gases (GHG) emissions, possibly offsetting their benefits regarding soil organic carbon (SOC) sequestration. Current methodologies from the Intergovernmental Panel on Climate Change (IPCC) for assessing the impacts of alternative farming practices on GHG emissions rely on global or country-specific coefficients.

View Article and Find Full Text PDF

Assessing the ecological and economic transformation pathways of plastic production system.

J Environ Manage

January 2025

Fisheries Economics Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Agricultural Economics and Rural Development, University of Pretoria, Pretoria, South Africa.

Plastic's incredible versatility drives its continuous production growth, contributing to 4.5% of global greenhouse gas (GHG) emissions. With an unsustainable 4% annual production growth rate, plastics' environmental impact is significant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!