Miniature electroparticle-cuff for wireless peripheral neuromodulation.

J Neural Eng

Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States of America. Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States of America.

Published: August 2019

AI Article Synopsis

Article Abstract

Objective: Recent developments in peripheral nerve electrodes allow the efficient and selective neuromodulation of somatic and autonomic nerves, which has proven beneficial in specific bioelectronic medical applications. However, current most clinical devices are wired and powered by implantable batteries which suffer from several limitations. We recently developed a sub-millimeter inductively powered neural stimulator (electroparticle; EP), and in this study, we report the integration of the EP onto commercial cuff electrodes (EP-C) allowing the wireless activation of peripheral nerves.

Approach: The current output of this device was defined at different magnetic field strenghts, and with respect to external antenna distance and activation angles. In acute in vivo testing, stimulation of the rat sciatic nerve (ScN) with the EP-C was able to evoke motor responses quantified by 3D tracking of the hind limb movement. Motor recruitment curves were obtained in response to variations in magnetic field strength (0-92.91 A m), stimulation frequencies (2-7 Hz), and pulse widths (50-200 µs).

Main Results: The results show constant output voltage throughout 50 400 stimulating cycles on a benchtop setting, and successful ScN motor activation with a 4 cm distance between external antenna and receiver. We achieved optimal motor recruitment indicated by maximizing range of hindlimb movement (6.01  ±  2.92 mm) with a magnetic field of 40.02  ±  2.85 A m and 150 µs pulse width. Stimulating pulse width or frequency did not significantly influence motor recruitment.

Significance: We confirmed that continuous stimulation for 14 min using monophasic pulses did not deleteriously affect the evoked motor responses when compared to wired charge-balanced biphasic electrical stimulation. We observed, however, a 36%-44% decrease in the evoked limb movement in both groups over time due to muscle fatigue. This study shows that the EP-C device can be used effectively for peripheral nerve neuromodulation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ab1c36DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
peripheral nerve
8
external antenna
8
motor responses
8
limb movement
8
motor recruitment
8
pulse width
8
motor
6
miniature electroparticle-cuff
4
electroparticle-cuff wireless
4

Similar Publications

A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.

View Article and Find Full Text PDF

In this study, we explored the biocultural mechanisms underlying ancient craft behaviours. Archaeological methods were integrated with neuroscience techniques to explore the impact on neuroplasticity resulting from the introduction of early pottery techniques. The advent of ceramic marked a profound change in the economy and socio-cultural dynamics of past societies.

View Article and Find Full Text PDF

Stable Luminescent Diradicals: The Emergence and Potential Applications.

Angew Chem Int Ed Engl

January 2025

Jilin University, College of Electronic Science and Engineering, State Key Laboratory of Integrated Optoelectronics, Qianjin Avenue 2699, Changchun, 130012, Changchun, CHINA.

Stable luminescent diradicals, characterized by the presence of two unpaired electrons, exhibit unique photophysical properties that are sensitive to external stimuli such as temperature, magnetic fields, and microwaves. This sensitivity allows the manipulation of their spin states and luminescence, setting them apart from traditional closed-shell luminescent molecules and luminescent monoradicals. As a result, luminescent diradicals are emerging as promising candidates for a variety of applications.

View Article and Find Full Text PDF

Defects Calculation and Accelerated Interfacial Charge Transfer in a Photoactive MOF-Based Heterojunction.

Small

January 2025

Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.

Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

Genotype-Phenotype Correlation in Progressive External Ophthalmoplegia: Insights From a Retrospective Analysis.

Neuropathol Appl Neurobiol

February 2025

Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China.

Background: Progressive external ophthalmoplegia (PEO) is a classic manifestation of mitochondrial disease. However, the link between its genetic characteristics and clinical presentations remains poorly investigated.

Methods: We analysed the clinical, pathological and genetic characteristics of a large cohort of patients with PEO, based on the type of their mtDNA variations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!