The study investigated the effect of extremely low-frequency electromagnetic fields (ELF-EMFs) exposure at different magnetic flux densities on genes expression of transcription factor Maf (c-Maf), signal transducer and activator of transcription 6 (STAT6), and retinoid-related orphan receptor alpha (RORα) in the spleen and thymus of rats. Eighty adult male rats were separated into four ELF-EMFs exposed and were exposed to magnetic flux densities of 1, 100, 500, and 2000 µT at a frequency of 50 Hz for 2 h daily for up to 60 d. All rats were intraperitoneally immunized on d 31, 44, and 58 of exposure. The experimental results showed that the expression levels of c-Maf, STAT6, and RORα in the thymus were not significantly changed at different magnetic flux densities. The expression levels of RORα and c-Maf were significantly downregulated at the densities of 1 and 100 µT, while the expression of STAT6 was only significantly decreased at the density of 100 µT. In conclusion, low magnetic flux densities of ELF-EMFs may reduce the expression levels of c-Maf, STAT6, and RORα genes in the spleen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15368378.2019.1608832 | DOI Listing |
Alzheimers Dement
December 2024
Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.
Background: Understanding the neuronal mechanisms of learning and memory is one of the major goals in neurophysiology and neuropsychology. Disorders related to memory consolidation are often the consequences of dynamic plasticity changes, which may lead to a reduction in spine number and density, impairing neural networks. Sleep is one of the major physiological prerequisites for memory consolidation, especially during NREM sleepwhen glymphatic system clearance takes place, too.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA.
Theoretical calculations show that twisted double bilayer graphene (TDBG) under a transverse electric field develops a valley Chern number 2 at charge neutrality. Using thermodynamic and thermal activation measurements we report the experimental observation of a universal closing of the charge neutrality gap in the Hofstadter spectrum of TDBG at 1/2 magnetic flux per unit cell, in agreement with theoretical predictions for a valley Chern number 2 gap. Our theoretical analysis of the experimental data shows that the interaction energy, while larger than the flat-band bandwidth in TDBG near 1° does not alter the emergent valley symmetry or the single-particle band topology.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA.
We present a scalable protocol for measuring full counting statistics (FCS) in experiments or tensor-network simulations. In this method, an ancilla in the middle of the system acts as a turnstile, with its phase keeping track of the time-integrated particle flux. Unlike quantum gas microscopy, the turnstile protocol faithfully captures FCS starting from number-indefinite initial states or in the presence of noisy dynamics.
View Article and Find Full Text PDFAnal Methods
January 2025
Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
The evolution of the lunar magnetic field can reveal the Moon's interior structure, thermal history, and surface environment. The mid-to-late-stage evolution of the lunar magnetic field is poorly constrained, and thus, the existence of a long-lived lunar dynamo remains controversial. The Chang'e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at midlatitude.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!