Download full-text PDF |
Source |
---|
Acc Chem Res
January 2025
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia.
Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO/N reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability.
View Article and Find Full Text PDFSci Rep
January 2025
Climate and Environmental Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
Abiotic H and hydrocarbons are found in fluids discharged from ultramafic-hosted hydrothermal vents. Beneath the hydrothermal vents, abiotic H and hydrocarbons can be formed by serpentinization reactions and Fischer-Tropsch-type hydrocarbon-forming reactions, respectively, over ultramafic rocks. However, the source rocks that form abiotic H and hydrocarbons may extend to broader subsurface rocks.
View Article and Find Full Text PDFChem Asian J
January 2025
Leibniz-Institut fur Katalyse eV, organmetallic and catalyst, Albert-Einstein-Str. 29a, 18059, Rostock, GERMANY.
Imidazolines play pivotal roles in numerous fields. However, the direct construction of imidazolines from primary amines involves precise C-C and C-N bond formations, rendering this area still underdeveloped to this day. Herein, a photo-driven metal-free catalytic system has been successfully applied to a novel coupling-cyclization reaction between arylamines and formaldehyde, enabling the direct synthesis of various 1,3-diarylimidazolines from primary amines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!