Aqueous solutions of polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) copolymers form micelles and cubic lattices as their temperature is raised. The presence of added solutes within the dispersions can also affect the kinetics of structure formation. Here, we investigate the structures formed in the amphiphiles P104, P105, and F108 solutions at 31% mass per v both neat and co-formulated with the drug cisplatin (0.02% to 0.1% mass per v) using small-angle X-ray scattering. P104 formed BCC colloidal crystals while P105 and F108 formed FCC structures. Cisplatin had a minor influence of the formation and stability of the crystals during these thermal excursions. The largest interaction between the amphiphiles and cisplatin was P104 where there was a 2% reduction in the BCC lattice parameter of P104 as cisplatin loading rose to 0.1% at 28 °C. The F108 unit cell swelled ∼2% upon cisplatin loading of 0.1%. A progressive evolution and breakdown of these structures was noted as the temperature rose from 10 °C to 35 °C. For the different amphiphiles, crystal thermal expansion coefficients of ∼1 × 10-2 °C-1 were determined in neat and loaded amphiphiles with cisplatin and all the crystals swelled with increasing temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9sm00071b | DOI Listing |
Soft Matter
May 2019
Department of Materials Science and Engineering, University of Michigan, Room 2046 H. H. Dow Bldg, Ann Arbor, MI 48109, USA.
Aqueous solutions of polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) copolymers form micelles and cubic lattices as their temperature is raised. The presence of added solutes within the dispersions can also affect the kinetics of structure formation. Here, we investigate the structures formed in the amphiphiles P104, P105, and F108 solutions at 31% mass per v both neat and co-formulated with the drug cisplatin (0.
View Article and Find Full Text PDFLangmuir
December 2015
Shah-Schulman Center for Surface Science and Nanotechnology, Dharmsinh Desai University, Nadiad-387001, Gujarat, India.
The dynamic surface tension of aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) [(PEO-PPO-PEO)]-type polymeric surfactant (P103, P105, F108, P123, and F127) solutions were correlated with water penetration in packed Teflon powders, the sedimentation of Teflon suspensions in these solutions, foamability, and contact angle measurements on a Teflon surface. The DST trend with bubble lifetime indicated that the overall slowdown in the diffusion process in aqueous solutions is a function of a higher poly(ethylene oxide) (PEO) molecular weight for a given series of block copolymers containing equal PPO molecular weights, favoring slower diffusion kinetics to the air-water interface caused by preferential partitioning in bulk water. The wettability of poly(tetrafluoroethylene) (PTFE) powder illustrates better water penetration for polymers with low molecular weight and lower HLB values.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2006
Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
Adsolubilization of 2-naphthol into an adsorbed layer of triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, Pluronics) copolymers on hydrophobically modified silica particles has been investigated. Four kinds of Pluronics (P103, P105, P123, and F108) were employed in order to understand the effect of the hydrophobicity of the surfactants on the adsolubilization. The amount of the Pluronics adsorbed of the maximum/saturation adsorption level was increased with a decrease in the HLB value, suggesting that the more hydrophobic Pluronics (P103 and P123) adsorb preferentially onto the hydrophobic silica surface over the more hydrophilic Pluronics (P105 and F108).
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2006
Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
Adsolubilization of 2-naphthol into an adsorbed layer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers (Pluronics) on hydrophilic silica has been investigated. Four kinds of Pluronics (P103, P105, P123, and F108) were used in order to understand the effect of the hydrophobicity of surfactant on the adsolubilization. The order of the adsorption in the saturation level was found to be P123 approximately P103 > P105 >> F108, meaning that Pluronics with higher hydrophobicity can adsorb preferentially to the silica surface.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 1997
Department of Chemical Engineering and Materials Science, University of California, Davis, California, 95616
Micelle structural properties were determined for five poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer solutions at 25°C by using light scattering techniques. Size distributions for the Pluronic series P103, P104, P105, F108, and P123 were found from dynamic light scattering. Aggregation numbers from both dynamic light scattering and static light scattering were determined, and the results are interpreted using fundamental hydrodynamic and statistical thermodynamic models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!