Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Airway narrowing due to hyperresponsiveness severely limits gas exchange in patients with asthma. Imaging studies in humans and animals have shown that bronchoconstriction causes patchy patterns of ventilation defects throughout the lungs, and several computational models have predicted that these regions are due to constriction of smaller airways. However, these imaging approaches are often limited in their ability to capture dynamic changes in small airways, and the patterns of constriction are heterogeneous. To directly investigate regional variations in airway narrowing and the response to deep inspirations (DIs), we utilized tantalum dust and microfocal X-ray imaging of rat lungs to obtain dynamic images of airways in an intact animal model. Airway resistance was simultaneously measured using the flexiVent system. Custom-developed software was used to track changes in airway diameters up to (~0.3-3 mm). Changes in diameter during bronchoconstriction were then measured in response to methacholine (MCh) challenge. In contrast with the model predictions, we observed significantly greater percent constriction in larger airways in response to MCh challenge. Although there was a dose-dependent increase in total respiratory resistance with MCh, the percent change in airway diameters was similar for increasing doses. A single DI following MCh caused a significant reduction in resistance but did not cause a significant increase in airway diameters. Multiple DIs did, however, cause significant increases in airway diameters. These measurements allowed us to directly quantify dynamic changes in airways during bronchoconstriction and demonstrated greater constriction in larger airways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689744 | PMC |
http://dx.doi.org/10.1152/ajplung.00050.2019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!